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Abstract

This paper proposes a state-dependent switching control for a class of switched nonlinear systems,
whose model describes a permanent magnet synchronous machine (PMSM) fed by a three-phase
voltage source inverter. Due to its high torque density, high efficiency and wide velocity range, this
electrical drive is widely used for traction and several applications in robotics, aerospace, electric
vehicles among others. The proposed design conditions are based on a non-quadratic Lyapunov
function, dependent on the machine shaft displacement, and assure asymptotic tracking of a pre-
specified time-varying rotational velocity profile with guaranteed performance. Properties of the
nonlinear system under consideration are used to derive design conditions expressed in terms of
linear matrix inequalities that can be solved efficiently. Special cases involving asymptotic stability
toward step and ramp velocity profiles are presented. Experimental results are used to validate the
proposed technique.

Keywords: Guaranteed cost, Linear matrix inequalities, PMSM, Switched nonlinear systems,
Trajectory tracking.

1. Introduction

Permanent magnet synchronous machines (PMSMs), characterized by the presence of perma-
nent magnets in the rotor and a set of windings in the stator, do not require magnetizing currents
in the rotor, which enables high torque density, low torque ripple, high efficiency and a wide range
of velocities. These characteristics make PMSMs desirable in several high-performance applica-
tions such as electrical and hybrid vehicles [1], autonomous water-pumping stations [2], aerospace
applications [3], among others. References on modeling and classical control approaches for these
machines are available in [4] and [5].

IThis research was supported by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”,
Finance Code 001, by the “National Council for Scientific and Technological Development (CNPq)”, under grant
numbers 303499/2018-4, and 303887/2014-1, by the São Paulo Research Foundation (FAPESP) under grant number
2017/20343-0 and by the National Science Foundation under grant numbers CNS-1329650 and EPCN-1608880.

∗Corresponding author : lucas.egidio@uclouvain.be
Email addresses: lucas.egidio@uclouvain.be (Lucas N. Egidio), grace@fem.unicamp.br (Grace S. Deaecto),

hespanha@ucsb.edu (João P. Hespanha), geromel@dsce.fee.unicamp.br (José C. Geromel)

Preprint submitted to Elsevier January 22, 2022



−
+

Vdc

s4

s1

s5

s2

s6

s3ia
ib

ic

PMSM

J
θ

Figure 1: PMSM and inverter schematic

A PMSM is generally fed by a voltage source inverter (VSI) whose switches are operated to
command desired voltages to each of the machine phase terminals, see Fig. 1. A standard approach
to control these switches, known as field-oriented control (FOC), consists of modeling the machine
in terms of an auxiliary rotating reference frame in which the currents are regulated by means of
PID controllers together with feedback linearization techniques. Another recurrent approach in the
literature is the direct-torque control (DTC), which, in general, controls the machine torque by
adopting switching tables that depend on the estimated magnetic flux and torque signals. Nev-
ertheless, both methods require reference frame transformations and a second feedback loop that
provides the reference current or torque to the inner loop in order to control the machine shaft veloc-
ity or its position. Finally, methodologies based on Model Predictive Control such as [6] have been
successful in tackling the control of PMSM but require dealing with online continuous optimization
problems. Our goal is to provide an alternative control methodology based on a state-dependent
switching rule to decide continuously the state (open or closed) of the VSI switches, bringing the
rotor velocity to a desired profile, in a single loop, without using auxiliary reference frames and the
associated transformations, and avoiding the solution of continuous or discrete optimization prob-
lems at each sampling instant. Insights from switched control theory are leveraged to accomplish
this goal.

Switched systems are composed of a set of subsystems, also called operation modes, and a
switching function (or switching rule) that selects one of them at each instant of time. Some refer-
ences on this area include [7], [8] and [9]. For general nonlinear switched systems, some references
as [10] provide methods for designing switching functions but these cannot be applied in the case
where the subsystems do not share a common equilibrium. Switched affine systems form an im-
portant subclass characterized by the presence of affine terms in their dynamic models, allowing
for the existence of several equilibrium points, whose stability can be guaranteed by the action of a
suitable state or output-dependent switching control. This subclass is used to model a great num-
ber of systems in the power electronics domain, see [11], [12] and [13] as representative examples.
In the continuous-time domain, design conditions assuring global asymptotic stability of a desired
equilibrium point are presented in [14], [12] and [15] while, in the discrete-time domain, stabilizing
switching rules are provided in [16] and [17].

The main contribution of this paper is a state-dependent switching control capable of assuring
asymptotic tracking to a rotational velocity profile for a PMSM fed by a three-phase VSI. When
compared to the previously mentioned switched affine systems, the switching control problem for
PMSMs is more challenging due to their dynamic model described by a set of coupled differential
equations with sinusoidal functions of the rotor angular displacement. The stability conditions
are based on a non-quadratic Lyapunov function that depends on sinusoidal functions of the state
variable, whose trigonometric properties are suitably explored to obtain linear matrix inequalities
(LMIs). Therefore, the design procedure is cast as a convex optimization problem that minimizes
a guaranteed performance cost.
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Regarding the state of the art and how this paper improves it, let us comment on some related
works available in the literature. The first is a preliminary version of these results dealing solely
with asymptotic stability and neglecting friction and external torques, which is available in [18].
In contrast with this preliminary work, the present paper has to deal with the greater difficulty
of a trajectory tracking problem, where the rotational angular velocity must follow a time-varying
profile whereas the currents converge to appropriate patterns. This represents a more general
and intricate problem than the asymptotically stabilization to an equilibrium point tackled in [18].
Also, the assumption that the rotational velocity respects a given upper-bound was replaced by a
theoretical guarantee depending on the initial conditions. Another related work is [19], where a
switching strategy has been proposed to control PMSMs but based on a quadratic Lyapunov func-
tion. However, in this reference the trajectory tracking problem was not formally addressed. In [20]
the switching strategy is based on a given control Lyapunov function combined with a backstep-
ping procedure but no systematic methodology to obtain this Lyapunov function is provided. In the
present work, we propose a switched controller based on a novel control methodology that provides
a smooth transient response when a velocity ramp profile is adopted with guaranteed performance
and, when compared to classical FOC methodologies, demands less computational effort and fewer
microcontroller peripherals. Simulation and experimental results are provided.

Notation: For real vectors or matrices, (′) refers to their transpose. For symmetric matrices,
(•) denotes a symmetric block. The identity matrix of appropriate dimension is denoted by I. The
symbols R, R+ and N denote the sets of real, nonnegative real and natural numbers, respectively.
For real and symmetric matrix, X > 0 denotes a positive definite matrix. The convex combination
of N vectors with the same dimension is denoted as vµ =

∑N
i=1 µivi with µ ∈ ΛN where ΛN ⊂ RN

is the unit simplex, that is, the set of all nonnegative vectors with N components and sum equal
to one.

2. Problem Statement

Consider the three-phase permanent magnet synchronous machine with one pair of poles fed
by a three-phase inverter with switches {s1, · · · , s6} and a DC source Vdc depicted in Figure 1.
The dynamic model of this assembly is described by the following coupled nonlinear differential
equations

L
dia(t)

dt
+Ria(t) = va(t)− λω(t)fa(θ(t)) (1)

L
dib(t)

dt
+Rib(t) = vb(t)− λω(t)fb(θ(t)) (2)

L
dic(t)

dt
+Ric(t) = vc(t)− λω(t)fc(θ(t)) (3)

together with

J
dω(t)

dt
+ cω(t) = λia(t)fa(θ(t)) + λib(t)fb(θ(t)) + λic(t)fc(θ(t))− τ (4)

dθ(t)

dt
= ω(t) (5)
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Table 1: Modes σ, switch states and phase voltages
σ s1 s2 s3 va vb vc

1 0 0 1 −Vdc/3 −Vdc/3 2Vdc/3
2 0 1 0 −Vdc/3 2Vdc/3 −Vdc/3
3 0 1 1 −2Vdc/3 Vdc/3 Vdc/3
4 1 0 0 2Vdc/3 −Vdc/3 −Vdc/3
5 1 0 1 Vdc/3 −2Vdc/3 Vdc/3
6 1 1 0 Vdc/3 Vdc/3 −2Vdc/3

7 1 1 1 0 0 00 0 0

where ia(t), ib(t) and ic(t) are phase currents satisfying ia(t) + ib(t) + ic(t) = 0 for all t ∈ R+,
va(t), vb(t) and vc(t) are phase to neutral voltages, R and L are the resistance and the equivalent
inductance per phase, respectively, J is the rotor moment of inertia, λ is the peak value of the
mutual flux linkage, c is the viscous friction coefficient, τ is the external constant torque, θ(t) is the
shaft angular displacement and ω(t) is the angular velocity. The auxiliary periodic functions fa(θ),
fb(θ) and fc(θ) are related to the shape of the back electromotive force (emf) and are defined as

fa(θ) = sin(θ) (6)
fb(θ) = sin(θ − 2π/3) (7)
fc(θ) = sin(θ − 4π/3) (8)

The voltages va(t), vb(t) and vc(t) depend exclusively on the state (open or closed) assigned for the
switches {s1, · · · , s6}, at each instant of time. More specifically, si is 1 when the switch is closed
and 0 when it is open. The control of these switches is the only manner of actuating in the system
in order to make the angular velocity ω(t) asymptotically convergent to a pre-specified profile ω∗(t)
chosen by the designer. Each pair of switches (s1, s4), (s2, s5), (s3, s6) is alternately commanded,
i.e., s1 is closed whenever s4 is open, and vice-versa. Thus, there exist eight possible configurations
for the switches, defining seven distinct combinations for the triple va(t), vb(t) and vc(t) that are
represented by the switching function σ ∈ K = {1, · · · , 7}, as detailed in Table 1. This allows us to
describe (1)-(5) with the following state space representation

ẋ(t) = A(θ(t))x(t) + bσ(t), x(0) = x0 (9)

θ̇(t) = ω(t), θ(0) = θ0 (10)

where x(t) = [iφ(t)′ ω(t)]′ : R+ → R4 is the state variable with iφ(t) = [ia(t) ib(t) ic(t)]
′, σ(t) :

R+ → K is the switching function to be designed and the matrices (A(θ), bσ) are given by

A(θ)=

[
−(R/L)I −(λ/L)f(θ)

(λ/J)f(θ)′ −(c/J)

]
, bσ=

[
(1/L)vσ
−(τ/J)

]
(11)

where the vector-valued function is f(θ) = [fa(θ) fb(θ) fc(θ)]
′ : R → R3, and the voltage function

vσ(t) = [va(t) vb(t) vc(t)]
′ : R+ → R3 takes the values shown in Table 1, for different modes

σ(t) ∈ K, ∀t ∈ R+. In (11), the 3× 3 identity matrix is denoted by I.
The main goal of this paper is to design a state dependent function u(x(t), θ(t)) : R4 × R→ K

such that the switching control σ(t) = u(x(t), θ(t)) guarantees asymptotic tracking to a given
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rotational velocity profile ω∗(t). Ideally the switching function should match the solution to the
optimal control problem

min
σ

∫ ∞
0

(
‖(iφ(t)− i∗φ(t))‖2 + d2(ω(t)− ω∗(t))2

)
dt (12)

where d > 0 is a parameter used by the designer to define an appropriate tradeoff between the
two components of the total cost and i∗φ(t) is the phase current reference vector that is compatible
with ω∗(t) and leads to the least energy dissipation. However, as it has been already discussed in
the literature, see for instance [12], this problem is difficult to solve due to the nonlinear nature
of the switching control and, therefore, a suboptimal solution is obtained by minimizing a suitable
upper bound of (12). In other words, we are particularly interested in assuring the asymptotic
convergence of the rotor velocity ω(t) and phase current vector iφ(t) to the desired profiles ω∗(t)
and i∗φ(t), respectively.

2.1. Mathematical properties of function f(θ)

The vector-valued function f(θ) : R→ R3 can be written as f(θ) = Gg(θ) with

G =

 1 0

−1/2 −
√

3/2

−1/2
√

3/2,

 , g(θ) =

[
sin(θ)
cos(θ)

]
(13)

where the matrix G ∈ R3×2 represents the inverse Clarke transformation [21]. Defining the function
Df (θ, ω) = ω∇f(θ) and using (13), simple algebraic manipulations show that, for all (θ, ω) ∈ R2,
the relations

f(θ)′f(θ) = 3/2

Df (θ, ω)′f(θ) = 0

Df (θ, ω)′Df (θ, ω) = 3ω2/2

(14)

hold. Finally, for the unitary vector e = [1 1 1]′ ∈ R3 it can be also verified that e′f(θ) = 0 and
e′Df (θ, ω) = 0. This means that the images of function f(θ) and of Df (θ, ω) belong to a plane
orthogonal to the vector e ∈ R3, known as the αβ plane. We also conclude that, for every scalars
a1, a2 ∈ R, the linear combination of f(θ) and Df (θ, ω) given by a1f(θ)+a2Df (θ, ω) always belongs
to the circumference

Fω =

{
y ∈ R3 : e′y = 0, ‖y‖ =

√
3(a2

1 + a2
2ω

2)/2

}
(15)

For a given κ > 0, the set F =
⋃
|ω|≤κ Fω represents an annulus in the αβ plane with inner and

outer radii defined by ω = 0 and ω = ±κ, respectively. The maximal circumference with radius
correspondent to |ω| = κ is denoted by Fκ.

3. Main Results

Within this section, we present the main results regarding the design of a state dependent
switching control capable of assuring asymptotic tracking and minimum guaranteed performance
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cost. More specifically, for a given κ ∈ R+, which defines the velocity domain of interest

Ωκ = {ω ∈ R : |ω| ≤ κ} (16)

our main goal is to determine a set of attainable rotational velocity profiles ω∗(t); the associated
harmonic currents i∗φ(t) = i∗(t)f(θ(t)), where i∗(t) is a scalar valued function; and a switching
function σ(t) = u(x(t), θ(t)) responsible to orchestrate the state trajectories asymptotically towards
x∗(t) = [i∗φ(t)

′
ω∗(t)]′ assuring a minimum upper bound for the optimal cost (12). Actually, from

a set of initial conditions (x0, θ0) ∈ R4 × R and a pre-specified velocity profile ω∗(t), we need to
assure that the rotational velocity ω(t) does not leave the region (16), i.e., ω(t) ∈ Ωκ for all t ∈ R+

and attains the feasible profile ω∗(t), asymptotically.
To accomplish this goal, consider the auxiliary state variable

ξ(t) = x(t)− x∗(t) (17)

and the following non-quadratic, radially unbounded (with respect to ξ), Lyapunov function can-
didate

ν(ξ, θ) = ξ′P (θ)ξ (18)

where the symmetric matrix valued function P (θ) : R→ R4×4 is of the form

P (θ) =

[
pI •

rf(θ)′ q

]
> 0, ∀θ ∈ R (19)

The real scalars (p, q, r) are design variables to be determined together with the switching function.
Notice that the Lyapunov function (18) is non-quadratic because the matrix P (θ) is dependent on
the state, via the variable θ(t). This enables us to get a performance guarantee that is much less
conservative than with a quadratic function ν(ξ) = ξ′Pξ that takes a full, but constant, matrix
P . We proceed by calculating its time derivative along an arbitrary solution (ξ(t), θ(t)), ∀t ∈ R+

of the system under consideration (9)-(10), taking into account that df(θ(t))/dt = Df (θ(t), ω(t)).
After some algebraic manipulations we obtain

d

dt
ν
(
ξ(t), θ(t)

)
=
∂ν(ξ(t), θ(t)

)
∂ξ

′

ξ̇(t) +
∂ν(ξ(t), θ(t)

)
∂θ

θ̇(t)

= −ξ(t)′W
(
θ(t), ω(t)

)
ξ(t) + 2ξ(t)′P

(
θ(t)

)
hσ(t)

(
θ(t), ω(t)

)
(20)

which holds for all ξ(t) and θ(t), where the symmetric matrix-valued function W (θ, ω) : R × R →
R4×4 and the vector-valued function hσ(t, θ, ω) : R× R× R→ R4 are

W (θ, ω)=

[
2(Rp/L)I − 2(λr/J)f(θ)f(θ)′ •

ζf(θ)′ − rDf (θ, ω)′ 3λr/L+ 2cq/J

]
(21)

with ζ = Rr/L− λq/J + λp/L+ rc/J and

hσ(t, θ, ω)=

[
vσ/L− ϑ(t, θ)/L− i∗Df (θ, ω)
(3i∗λ/2− cω∗ − τ − Jω̇∗)/J

]
(22)

with ϑ(t, θ) = (Ri∗+λω∗ + Ldi∗/dt)f(θ). The dependency of hσ on t occurs through i∗(t), ω∗(t),
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and their derivatives. Notice that, in order to impose the trajectory tracking condition, we need
to determine a switching control σ(t) = u(x(t), θ(t)) assuring that dν(ξ, θ)/dt < 0. Although
nontrivial, a solution to this task will be equivalently expressed as an optimization problem described
in terms of LMIs and relying on key properties of the nonlinear function f(θ). The next theorem
provides sufficient conditions for the existence of the switching function u(x, θ), that solves our
control design problem. This result assumes that the angular velocity remains within the set
defined by (16). We will subsequently provide conditions under which this is guaranteed to hold.

Theorem 1. Consider the switched nonlinear system (9)-(10) with initial condition (x0, θ0). Choose
the diagonal matrix Q = diag(I, d2) and the scalar κ ∈ R+ that defines the stability domain of in-
terest Ωκ given in (16) to which ω(t) is assumed to belong for all t ≥ 0. Let the current trajectory
i∗φ(t) = i∗(t)f(θ(t)) with

i∗(t) = 2
(
cω∗(t) + Jω̇∗(t) + τ

)
/(3λ) (23)

where ω∗(t) is a desired rotational velocity profile such that the signal ω∗ belongs to

Ω∗=
{
ω : ∆(ω)′

(
ψψ′ + κ2ϕϕ′

)
∆(ω) ≤ V 2

dc, |ω| ≤ κ
}

(24)

where the inequalities in the definition of Ω∗ should be understood pointwise in time and

ψ = 2/(
√

3λ)
[
Rc+ 3λ2/2 JR+ Lc JL R

]′ (25)

ϕ = 2/(
√

3λ)
[
Lc JL 0 L

]′ (26)

∆(ω) =
[
ω ω̇ ω̈ τ

]′ (27)

If there exist scalars (p, q, r) such that P (θ) > 0 and W (θ, ω) > Q for all θ ∈ R and ω ∈ Ωκ, then
the state feedback switching control σ(t) = u(x(t), θ(t)) with

u(x, θ) = arg min
j∈K

(
[pI rf(θ)](x− x∗)

)′
vj (28)

assures that x(t)→ x∗(t) asymptotically. Moreover, the upper bound∫ ∞
0

(
x(t)− x∗(t)

)′
Q
(
x(t)− x∗(t)

)
dt ≤ ξ′0P (θ0)ξ0 (29)

for the performance cost (12) holds for all ξ0 ∈ R4.

Proof: To prove asymptotic tracking towards x∗(t), we need to show that for an arbitrary solution
of (9)-(10) we have dν(ξ, θ)/dt < 0 for all ξ 6= 0, θ ∈ R and ω ∈ Ωκ. First of all, notice that the
choice of the current i∗ in (23) makes null the last element of the vector (22). Let us define

m(t) =
(
Ri∗ + λω∗ + L

di∗

dt

)
f(θ) + Li∗Df (θ, ω) (30)

which is a linear combination of f(θ) and Df (θ, ω) and, as it was discussed earlier, belongs to the
set Fω given by (15) with

a1 = Ri∗ + λω∗ + L
di∗

dt
, a2 = Li∗ (31)
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Figure 2: Polytope P and inscribed circumference Fκ

On the other hand, from the values of the phase voltages provided in Table 1, it is a matter of
immediate verification that e′vj = 0 for all j ∈ K which means that all vectors vj , j ∈ K, belong to
the same αβ plane in R3 as m(t) does. The consequence of this important fact that follows from
the physical nature of the machine is that at each instant of time t ∈ R+ the vector m(t) can be
written alternatively as a convex combination of the phase voltages vj , j ∈ K. More precisely, from
these reasonings we can say that while ω(t) ∈ Ωκ, there exists µ∗ ∈ ΛN such that

vµ∗ = m(t) (32)

if and only if

Fκ ⊆ P =

v ∈ R3 : v =
∑
j∈K

µjvj , µ ∈ ΛN

 (33)

As illustrated in Fig. 2, the circumference of radius Vdc/
√

2 is the one of maximum radius
inscribed in the polytope P. Thus, taking into account the definition of Fκ just after (15), the
inclusion (33) holds if and only if

3(a2
1 + a2

2κ
2)/2 ≤ V 2

dc/2 (34)

for all instants t ≥ 0 with a1 and a2 provided in (31). Substituting the current i∗ from (23) into a1

and a2 in (31), simple but tedious algebraic manipulations lead to the fact that the inequality (34)
holds whenever the desired rotational velocity profile ω∗ is chosen inside the set Ω∗ defined in (24).
That is, the set Ω∗ in (24) with the definitions (25)-(27) is obtained directly from (34) after using
a1 and a2 from (31) with i∗ in (23). Now taking into account the existence of µ∗ ∈ ΛN satisfying
(32), the equality (20) together with the switching rule (28) yield

dν(ξ, θ)/dt = −ξ′W (θ, ω)ξ + min
j∈K

2ξ′P (θ)hj(θ, ω)

< −ξ′Qξ + min
µ∈ΛN

2ξ′P (θ)hµ(θ, ω)

≤ −ξ′Qξ + 2ξ′P (θ)hµ∗(θ, ω)

= −ξ′Qξ ≤ 0 (35)

where the first inequality comes from the fact that W (θ, ω) > Q > 0 and the last equality holds
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from the fact that at each instant of time t ≥ 0 we are able to find µ∗ ∈ ΛN such that vµ∗ satisfies
(32), which leads to hµ∗ = 0. Hence, dν(ξ, θ)/dt < 0 for all ξ 6= 0, θ ∈ R and ω ∈ Ωκ implies that
ξ(t) → 0 asymptotically. Integrating both sides of (35) from t = 0 to t → ∞ we obtain the upper
bound (29). The proof is concluded. 2

This result provides a switching control that can be applied in the context of trajectory tracking,
provided that the desired rotational velocity belongs to the set of feasible trajectories Ω∗, given in
(24). Moreover, an upper bound on the associated cost is determined and, as it will be seen next,
it can be minimized by an adequate choice of the Lyapunov matrix valued function P (θ).

An important remark at this point concerns whether Filippov solutions are obtained as a result
of the given state-dependent switching law (28). Indeed, these solutions are not ruled out in our
methodology but the min-type nature of the switching function still ensures that x(t) → x∗(t)
asymptotically. Consider that at some (ξ, θ) the set of minimizers I(ξ, θ) ⊆ K contains more than
one element. For a given µ ∈ Λ|I(ξ,θ)|, the time derivative of the Lyapunov function is given by

dν(ξ, θ)/dt = −ξ′W (θ, ω)ξ + 2ξ′P (θ)
∑

i∈I(ξ,θ)

µihi(θ, ω)

= −ξ′W (θ, ω)ξ + 2ξ′P (θ)hj(θ, ω), ∀j ∈ I(ξ, θ)

= −ξ′W (θ, ω)ξ + min
j∈K

2ξ′P (θ)hj(θ, ω)

< 0 (36)

where the first equality comes from the fact that the time derivative ξ̇(t) = ẋ(t)− ẋ∗(t) follows from
the differential inclusion

ẋ(t) ∈ co {A(θ(t))x(t) + bi : i ∈ I(ξ(t), θ(t))} (37)

see [22] for more details. By definition of I(ξ, θ), the second equality follows from the fact that
ξ′P (θ)hi(θ, ω) = ξ′P (θ)hj(θ, ω) for any i, j ∈ I(ξ, θ), and the last inequality is a consequence
of (35). From a practical viewpoint, although real-life switches present physical limitations that
prevent Filippov solutions to arise, under high sampling frequencies the behavior of the real system
tends to the theoretical one, allowing the implementation of the switching function (28) under a
continuous-time perspective. Further discussions on dwell-time constraints and limit behavior is
left for future work.

We now turn our attention to the set of initial conditions (ξ0, θ0) for which ω(t) ∈ Ωκ for all
t ∈ R+ and a given κ ∈ R+, thus satisfying the assumption needed by Theorem 1. The next theorem
presents a key result that, together with Theorem 1, assures the tracking property ω(t) → ω∗(t)
and ω(t) ∈ Ωκ for any choice of the velocity profile such that ω∗(t) ∈ Ω∗ for all t ∈ R+.

Theorem 2. Let a rotational velocity profile ω∗ ∈ Ω∗, a scalar κ ∈ R+ and a triple (p, q, r)
satisfying the design conditions provided in Theorem 1 be given. Any solution for the system (9)-
(10) rewritten in terms of ξ as in (17) and evolving from (ξ0, θ0) ∈ Ξ with

Ξ =
{

(ξ, θ) ∈ R4 × R : ν(ξ, θ) ≤ ν0

}
(38)

ν0 =

(
q − 3r2

2p

)
min
ς∈R+

(
κ− |ω∗(ς)|

)2 (39)
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satisfies ω(t) ∈ Ωκ for all t ∈ R+.

Proof: An application of the Schur Complement to (19) shows that P (θ) > 0 for all θ ∈ R if and
only if q > 3r2/(2p) > 0. First, considering arbitrary t ∈ R+ and (ξ(t), θ(t)) ∈ Ξ, we have

ν0 ≥ ν(ξ(t), θ(t))

≥ min
iφ(t)∈R3

ν(ξ(t), θ(t))

=

(
q − 3r2

2p

)(
ω(t)− ω∗(t)

)2 (40)

where the equality follows from the application of min operator to (18). This together with (39)
yield (

ω(t)− ω∗(t)
)2 ≤ min

ς∈R+

(
κ− |ω∗(ς)|

)2
≤
(
κ− |ω∗(t)|

)2 (41)

Taking into account that ω∗ ∈ Ω∗ implies |ω∗(t)| ≤ κ, inequality (41) implies that −κ + |ω∗| ≤
ω−ω∗ ≤ κ−|ω∗| from which one concludes that |ω(t)| ≤ κ and therefore ω(t) ∈ Ωκ. From Theorem
1 it follows that dν(ξ(t), θ(t))/dt < 0 whenever ω(t) ∈ Ωκ and we have shown that every (ξ, θ) ∈ Ξ
is such that ω ∈ Ωκ. Since Ξ is a level set of the Lyapunov function, putting all these properties
together, we conclude that any trajectory starting in Ξ remains in this set for all t ∈ R+, concluding
thus the proof. 2

It is useful to provide an interpretation of the set Ξ, which is a level set of the Lyapunov function
defined by ν0. Using the fact that

min
iφ(ς)∈R3,|ω(ς)|=κ

ν(ξ(ς), θ(ς))=

(
q − 3r2

2p

)(
κ− |ω∗(ς)|

)2 (42)

then it is readily verified that

ν0 = min
ς∈R+

(
q − 3r2

2p

)(
κ− |ω∗(ς)|

)2
= min
ς∈R+

min
iφ(ς)∈R3,|ω(ς)|=κ

ν(ξ(ς), θ(ς)) (43)

which indicates that ν0 defines the largest level set of the Lyapunov function such that |ω(ς)| = κ
for all ς ∈ R+. Hence, Ξ is the set of initial conditions (ξ0, θ0) such that the resulting trajectory
respects ω(t) ∈ Ωκ for all t ≥ 0, fulfilling the assumption needed by Theorem 1.

Additionally, the set of attainable trajectories Ω∗ defined in (24) has an especial structure with
ψψ′ and ϕϕ′ being rank one matrices that allows it to be recast in a different form, reducing the
computational cost of verifying whether a given reference ω∗ belongs to it. Hence, taking this
property into account, Ω∗ can be replaced by a simpler although more conservative version

Ωc =

{
ω : ‖∆(ω)‖2 ≤ V 2

dc

‖ψ‖2 + κ2‖ϕ‖2
, |ω| ≤ κ

}
⊆ Ω∗ (44)

10



which imposes, as expected, a bound on ∆(ω) that depends on the physical parameters of the motor
and the design parameter κ ∈ R+.

3.1. Selection of controller parameters
We now devote our attention to the selection of the controller parameters, which include the

scalar κ that defines Ωκ and (p, q, r) that compose the Lyapunov function. The application of this
result in each case of interest requires some care as indicated in the sequel. Let us consider the
following particular cases that are important in practice:

• Case 1 : When the viscous friction coefficient and the external torque can be neglected
(e.g. in low-load operations), we can adopt (c, τ) = (0, 0). This situation has been primarily
studied in [18], considering a constant rotational velocity ω∗(t) = ω∗. It can be noticed that
the conditions provided by Theorem 1 are considerably simplified as we only need to take into
account scalars ∆(ω) = ω, ψ =

√
3λ and ϕ = 0 in (24), yielding Ωc ≡ Ω∗ ≡ Ωκ with

κ = Vdc/(
√

3λ) (45)

• Case 2 : When τ is a non-zero constant, for example corresponding to Coulomb friction,
and ω∗(t) = ω∗ is a desired constant velocity, we can view ∆(ω) = [ω τ ]′, ψ and ϕ as vectors
in R2 that follow from the elimination of the second and third elements of (25)-(26). Taking
into account that ψψ′ + κ2ϕϕ′ ≥ 0 and that this matrix has all elements non-negative, a
necessary and sufficient condition for the convex set Ω∗ be equal to Ωκ follows by imposing
that [

κ
|τ |

]′ (
ψψ′ + κ2ϕϕ′

) [ κ
|τ |

]
≤ V 2

dc (46)

holds for some design parameter κ ∈ R+. This parameter should be chosen as small as possible
to minimize the required value for Vdc.

• Case 3 : When τ is still constant but the goal is to track a piecewise linear rotational
velocity profile ω∗, we need to consider ∆(ω) = [ω ω̇ τ ]′ since ω̈∗ = 0 almost everywhere. This
is not an overwhelming restriction as the discontinuous points of ω∗ can be considered as new
initial conditions for the remaining part of the trajectory. Hence, under this assumption we
only need to consider the first, second and fourth elements of (25)-(26). The subset Ωc given
in (44) yields the constraint ω2 + ω̇2 ≤ κ2 provided that the 4th-order polynomial inequality

‖ϕ‖2κ4 +
(
‖ψ‖2 + τ2‖ϕ‖2

)
κ2 ≤ V 2

dc − τ2‖ψ‖2 (47)

is satisfied for κ ∈ R+.

Now, an essential requirement of Theorem 1 is to obtain parameters (p, q, r) that satisfy the
inequalities W (θ, ω) > Q > 0 and P (θ) > 0 for all θ ∈ R and ω ∈ Ωκ. A computationally intensive
approach to this problem would be to exploit the periodicity of f(θ) by imposing these conditions
on a sufficiently fine discrete grid on the box defined by the intervals |θ| ≤ π and |ω| ≤ κ. However,
a more efficient manner can be adopted by using the result presented in the next lemma that follows
from the properties of the functions f(θ) and Df (θ, ω).

11



Lemma 1. Let the real parameters (α, β, ρ, η, υ) with β ≥ 0 and κ > 0 be given. The symmetric
matrix-valued function S(θ, ω) : R× R→ R4×4 defined by

S(θ, ω) =

[
αI − βf(θ)f(θ)′ •

ρf(θ)′ − ηDf (θ, ω)′ υ

]
(48)

is positive definite for all θ ∈ R and ω ∈ Ωκ if and only if the following conditions

2α/3 > β, 2υ/3 >

(
η2

α

)
κ2 +

(
ρ2

α− 3β/2

)
(49)

hold simultaneously.

Proof: Since by assumption β ≥ 0, the first diagonal block of S(θ, ω) is positive definite if and only
if [

αI •√
βf(θ)′ 1

]
> 0 (50)

and the Schur Complement with respect to the first diagonal element indicates that (50) holds if
and only if α > 0 and 1 > (β/α)f(θ)′f(θ) = 3β/(2α),∀θ ∈ R, which is exactly the first condition
in (49). Using this fact, the Schur Complement of (48) with respect to the first diagonal element
indicates that W (θ, ω) > 0 if and only if

υ >(ρf(θ)− ηDf (θ, ω))′ (αI − βf(θ)f(θ)′)
−1×

× (ρf(θ)− ηDf (θ, ω)) (51)

Using the Matrix Inversion Lemma, see [23], it follows that

(αI − βf(θ)f(θ)′)
−1

= (1/α)I + (β/α)

(
f(θ)f(θ)′

α− 3β/2

)
(52)

which, replaced into (51) and recalling the properties in (14), leads to

υ > 3ρ2/(2α) + 3η2ω2/(2α) + (β/α)

(
(3/2)2ρ2

α− 3β/2

)
= 3η2ω2/(2α) +

(
(3/2)ρ2

α− 3β/2

)
(53)

that must be verified for all ω ∈ Ωκ. This provides the second inequality in (49) after multiplying
both sides by the factor 2/3, concluding the proof. 2

Since the vector-valued function f(θ) is nonlinear, the result of Lemma 1 is somewhat surprising.
Moreover, it is important to notice that the conditions (49) can be equivalently rewritten by means
of only one LMI, simplifying the determination of the free parameters involved. The following result
shows how to determine the parameters (p, q, r) to minimize the upper bound given in Theorem 1,
by solving a convex optimization problem.

Theorem 3. For given initial conditions (ξ0, θ0), matrix Q > 0, and κ ∈ R+, the parameters

12



Table 2: Identified system parameters
R 2.19 Ω
L 8.1 ×10−3H
λ 6.0 ×10−2 V.s/rad
c 3.1 ×10−4 N.m.s/rad
J 3.0 ×10−4 kg.m2

Vdc 100 V
τ 8.7 ×10−3 N.m

(p, q, r) solution to the optimization problem

min
(p,q,r)∈R3

{
ξ′0P (θ0)ξ0 : P (θ) > 0, W (θ, ω)−Q > 0,∀(θ, ω) ∈ R× Ωκ

}
(54)

can be equivalently determined by solving the following convex optimization problem

min
(p,q,r)∈R3

ξ′0P (θ0)ξ0 (55)

subject to [
(2/3)q •
r p

]
> 0 (56)

 % • •
κr (2R/L)p− 1 •
ζ 0 (2R/L)p− (3λ/J)r − 1

 > 0 (57)

with % = (2λ/L)r + (4c/(3J))q − 2d2/3 and ζ = Rr/L− λq/J + λp/L+ rc/J .

Proof: First, notice that the conditions (49) can be expressed in terms of a linear matrix inequality
of the form 2υ/3 • •

κη α •
ρ 0 α− 3β/2

 > 0 (58)

Now, making S(θ, ω) = P (θ), Lemma 1 assures that inequality (56) is equivalent to P (θ) > 0 for
all θ ∈ R. In the same manner, writing S(θ, ω) = W (θ, ω) − Q, Lemma 1 assures that inequality
(57) is equivalent to W (θ, ω)−Q > 0 for all θ ∈ R and ω ∈ Ωκ. 2

The problem (54) always admits a feasible solution (p, q, r) with q = (J/L)p > 0, r small
enough and p > 0 large enough. This means that the design method proposed here always succeeds,
provided that the supply voltage Vdc is sufficiently large to enable the desired velocity profile ω∗.

4. Simulation and Experimental Results

The previously presented results are ready to be applied to the control of electrical drives, see [5],
[24], [25], as some instances. Indeed, trajectory tracking allows us to overcome common practical
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Figure 3: Photo of the experimental setup

issues, e.g. current peaks in transient response, which can be mitigated by adopting adequate
reference profiles such as a ramp function as it will be exemplified in this section.

We illustrate our design methodology through the control of a PMSM with parameters in Table
2 fed by a voltage source inverter like the one in Fig. 1. The experimental results were obtained
embedding the proposed switching function in a Texas Instruments TMS320F28069 micro-controller
(MCU) under sampling frequency fs = 40 kHz. A dead time of 1 µs was considered for operating
each pair of switches. Phase currents were measured through shunt resistors and data were acquired
by means of built-in analog-to-digital converter and quadrature encoder pulse modules. The motor
is the Estun EMJ-04APB24 and a propeller with a diameter of 50.8 cm was attached to its shaft, as
shown in Fig. 3. An incremental encoder with 2,500 steps per rotation was used to measure both
rotational velocity and displacement. The rotational velocity signal was filtered by means of a first
order Butterworth filter with cutoff frequency ωc = 4,000 rad/s, discretized through the bilinear
transformation. This allows to calculate the rotational velocity within a suitable precision.

To validate the identified model, we designed the switching function (28) to assure asymptotic
convergence of ω(t) toward a constant ω∗ = 100 rad/s. To this end, we selected κ = 314.1593
rad/s (or 3,000 rpm, the motor rated speed), which assures that ω∗ ∈ Ω∗. Solving the optimization
problem (55) stated in Theorem 3 for x(0) = 0, θ0 = 0, and Q = diag(I, 1), we obtained the solution

p = 2.8790, r = 0.0672, q = 0.1111 (59)

and the upper bound for (29) given by ξ′0P (θ0)ξ0 = 1,120.23. For this solution we can calculate
ν0 = 4,986.07 from (39), showing that (ξ0, θ0) ∈ Ξ and, thus, ω(t) ∈ Ωκ for all t ∈ R+. For
implementation purposes, it is known that real switches cannot operate arbitrarily fast but at high
sampling frequencies the real system behavior tends to the nominal one, enabling our strategy to
be implemented under a continuous-time perspective.

Figs. 4 and 5 show the closed loop response using the switching function (28) both in simulation
and in our hardware test bed. Fig. 6 provides the correspondent experimental switching signal.
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Figure 4: Experimental and simulated velocities for ω∗ = 100 rad/s
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Figure 5: Experimental and simulated phase currents for ω∗=100 rad/s

The simulated and experimental responses are very close and the angular velocity ω(t) has attained
the desired ω∗ as expected, thus validating the proposed control technique as well as the adopted
experimental arrangement. For the sake of comparison, solving the analogous problem to (54) but
considering a full constant matrix P > 0 and imposing W (θ) − Q > 0 over a grid of 100 equally
spaced points inside the interval θ ∈ [0, 2π] leads to an optimal upper bound for (29) given by
ξ′0Pξ0 = 4,892.92, about 4 times the one obtained from Theorem 3. This shows how the adopted
structure for the Lyapunov function allowed us to obtain less conservative upper bounds for the
considered optimal quadratic cost.

As a second experiment, we track a piecewise linear trajectory ω∗(t) to bring the rotational
velocity gradually to 50 rad/s, 100 rad/s and then to a complete stop. This is done by limiting
the angular acceleration |ω̇(t)| < 50 rad/s2, to avoid high peak currents. For the given κ, we
have verified that even though discontinuities are present in the time-derivative of the desired
velocity profile, ω∗(t) does belong to the set Ω∗ for almost every t ∈ R+. Indeed, all the piecewise
linear parts of ω∗(t) belong to Ω∗ and, therefore, asymptotic tracking is assured along them. As
already mentioned in Case 3, the discontinuities can be viewed as new initial conditions for the
remaining state trajectory. Adopting this time-varying reference and the same switching function
provided by (59), we obtained the rotational velocity trajectory ω(t) displayed in Fig. 7 with the
desired trajectory ω∗(t). The associated phase current ia(t) is displayed in Fig. 8 showing that,
by adopting a piecewise linear reference signal, the peak currents have been avoided, obtaining a
smoother transient response.

4.1. Computational analysis
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Figure 6: Experimental switching signal for a constant ω∗ = 100 rad/s

The proposed switching function (28) can be equivalently replaced by a more efficient one, in
terms of required computational effort. In fact, from (28) we have

u(x, θ) = arg min
j∈K

(
piφ + (rω − rω∗ − pi∗)f(θ)

)′
vj (60)

= arg min
j∈K

(
pGG#iφ + (rω − rω∗ − pi∗)Gg(θ)

)′
vj (61)

= arg min
j∈K

(
G#iφ +

(r
p

(ω − ω∗)− i∗
)
g(θ)

)′
G′vj (62)

where G#, denoting the Clarke transform, is given by

G# =
2

3

[
1 −1/2 −1/2

0 −
√

3/2
√

3/2

]
(63)

Despite the fact that GG# = I − (1/3)ee′ is not the identity matrix, we always have GG#iφ = iφ
whenever ia + ib + ic = 0. This can be readily shown, since e′iφ = 0.

Notice that while (60) requires the evaluation of three sine functions and two dot products
between vectors in R3, the expression (62) requires only one sine and one cosine along with two
dot products of vectors in R2, given that G′vj can be calculated a priori for all j ∈ K. Moreover,
observing that the expression inside the min-operator is linear with respect to vj , it always returns
0 for v7 = 0 and opposite results for the pairs (v1, v6), (v2, v5) and (v3, v4), implying that this
expression must be evaluated for only 3 instead of 7 subsystems. Finally, using the fact that
ic = −ia − ib we can expand G#iφ = [ia (−

√
3/3)(ia + 2ib)]

′, simplifying this matrix product to
one multiplication and two additions. The division (r/p) and possible scaling factors can also be
computed offline.

Implementing the above described strategy, we could perform the calculation of (62) and (23)
within 477 clock cycles, using floating-point arithmetic. For the sake of comparison, the field-
oriented control approach provided by Texas Instruments ControlSuite needs to compute a Clarke
and a Park Transform, three discrete-time PI controller updates, an inverse Park Transform and a
Space-Vector generation of PWM signals, which is done within 535 clock cycles also using floating-
point arithmetic in the same microprocessor. It is also important to highlight that the use of timer
modules for PWM generation is dismissed, which implies less usage of microcontroller peripher-
als and eventual cost reductions. Notice that these discussions rely on the observations made in
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Figure 7: Experimental rotational velocity and reference ω∗
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Figure 8: Experimental phase current correspondent to ω∗

the given experimental set-up. Further investigations and other accelerations should be applied,
but this preliminary comparison indicates that our approach is implementable and its required
computational power is comparable to those of classical control strategies.

5. Conclusions

This paper addresses the design of a state-dependent switching function capable of controlling
the switches of a voltage source inverter feeding a permanent magnet synchronous machine, assuring
asymptotic tracking to a given rotational velocity profile with a guaranteed performance cost. The
design is based on a non-quadratic Lyapunov function and can be equivalently described in terms of
LMIs, allowing the use of readily available optimization tools. Experimental results illustrated the
efficiency of the proposed design approach and a computational analysis shows that our methodology
requires less clock cycles than standard field-oriented control. The study of different electrical drives
and several other DC/AC converter applications based on this approach are promising directions
for future research. Additionally, problems such as the inclusion of dwell-time, dynamic output
feedback, H2 and H∞ performance will be addressed in future works.
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