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Resumo

Esta tese é dedicada ao estudo da teoria de controle de sistemas afins com comutação e algumas de suas aplicações

no contexto de eletrônica de potência. Após discussões preliminares, as contribuições principais são apresentadas.

O objetivo comum ao longo deste trabalho é desenvolver, sob a perspectiva de otimização convexa, estratégias

capazes de governar eventos de chaveamento em sistemas dinâmicos afins de maneira a levar a trajetória do

estado a um ponto de referência desejado ou a rastrear uma trajetória variante no tempo. Metodologias de

projeto, baseadas em uma função de Lyapunov quadrática generalizada, para função de comutação dependente

do estado ou da saída são fornecidas para sistemas afins com comutação a tempo discreto para os quais apenas

estabilidade prática é possível de ser assegurada. Subsequentemente, novas condições para estabilidade prática

são introduzidas baseadas em desigualdades de Lyapunov-Metzler e levando em conta uma função de Lyapunov

do tipo mínimo, que permite reduzir o conservadorismo referente à garantia de estabilidade. Uma metodologia

para projetar ciclos limites e assegurar a estabilidade assintótica global foi também apresentada, que leva

em conta uma função de Lyapunov variante no tempo e permite tratar otimização de desempenho H2 e H∞.

Ademais, novas discussões sobre a estabilidade de uma classe de sistemas não-lineares com comutação a tempo

contínuo são introduzidas, nas quais o problema de rastreamento de trajetória é tratado. O estudo desta classe é

de interesse visto que ela modela o comportamento dinâmico de conversores de potência CA-CC e de máquinas

síncronas de ímã permanente alimentadas por inversores de tensão. Esta nova abordagem permite o controle de

forma mais simples quando comparada a estratégias clássicas de controle vetorial. Finalmente, alguns resultados

experimentais são apresentados, validando as estratégias de controle desenvolvidas. As condições de estabilidade

e projeto são majoritariamente escritas em termos de desigualdades matriciais lineares e, logo, podem ser

resolvidas de forma eficiente por resolvedores de programação semi-definida prontamente disponíveis.

Palavras-chave: Sistemas com comutação, Sistemas de controle por realimentação, Desigualdades matriciais

lineares, Teoria do controle, Eletrônica de potência



Abstract

This dissertation is devoted to the study of switched affine systems control theory and some of its applications

in power electronics context. After some preliminary discussions, the main contributions are presented. The

common goal throughout this work is to develop, from a convex optimization viewpoint, strategies capable of

governing switching events in dynamical affine systems in order to bring the state variable to a desired reference

value or to track a time-varying trajectory profile. Design methodologies for state or output dependent switching

function based on a generalized Lyapunov function are provided for discrete-time switched affine systems, where

only practical stability is possible to be assured. Subsequently, novel practical stability conditions are proposed,

based on Lyapunov-Metzler inequalities and taking into account a min-type Lyapunov function, which allows us

to reduce conservativeness regarding stability guarantee. A methodology for designing limit cycles and assuring

their global asymptotic stability is also presented, which takes into account a time-varying Lyapunov function

and permits to cope with H2 and H∞ performance optimization. Afterward, novel discussions on the stability

of a continuous-time switched nonlinear systems class are introduced, where the trajectory-tracking problem

is addressed. The study about this class is of interest as it models the dynamic behavior of AC-DC power

converters and permanent magnet synchronous machines fed by voltage source inverters. This new approach

allows their control in a simpler manner when compared to classical field-oriented control strategies. Finally, some

experimental results are presented, validating the developed control strategies. Stability and design conditions are

mostly written as linear matrix inequalities and, thus, can be efficiently solved by readily available semi-definite

programming solvers.

Keywords: Switched systems, Feedback control systems, Linear matrix inequalities, Control theory, Power

electronics



List of Figures

1.1 Power versus switching frequency for various power electronic devices, as in Chow and Guo (2019) 18

2.1 Phase portrait for the Hare-Lynx problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 System trajectories evolving from x0 when xe is a stable (1), asymptotically stable (2) and unstable

(3) equilibrium point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Temperature trajectories under switching function uh(θ(t)) (left) and ua(t) (right). . . . . . . . 42

2.4 State trajectory “sliding” on the switching surface C. . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 State trajectories for system Gs (left) and Gu (right). . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Set Xc
e with equilibrium points xe (black circle), xe1 (red triangle) and xe2 (red circle). . . . . . 54

2.7 Phase portrait of the switched affine system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 Time evolution for a system trajectory along with corresponding switching signal. . . . . . . . . 55

2.9 Time evolution of the Lyapunov function v(ξ) for different T . . . . . . . . . . . . . . . . . . . . . 56

3.1 Phase portrait of state trajectory evolving from x0 = [0 5]′, being attracted to X . . . . . . . . . 66

3.2 Time evolution of state trajectory from x0 = [0 5]′, and resulting switching sequence. . . . . . . 67

3.3 Block diagram showing the proposed output-dependent switching strategy. . . . . . . . . . . . . . 70

3.4 System and filter state over time under the output-dependent switching rule. . . . . . . . . . . . 78

3.5 Switching signal generated by the output-dependent switching rule. . . . . . . . . . . . . . . . . . 78

3.6 Differential-drive robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 System and filter state over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 Phase portraits for both system and filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.9 Obtained switching signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 Graphical representation of a nonconvex set of attraction provided by Theorem 3.6. . . . . . . . 85

3.11 State trajectory ξ and sets of attraction assured from Corollary 3.3. . . . . . . . . . . . . . . . . 89

3.12 Time evolution of trajectories ξ[n] and switching sequence σ[n], obtained from Corollary 3.3. . . 90

3.13 Lyapunov function trajectory and the upper bound r∗ for the invariant set together with the

switching function (3.102). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.14 Phase portrait of a state trajectory converging to the invariant set of attraction V, in red. . . . . 92

3.15 Area of the set of atraction X calculated from Theorem 3.1 (solid black) and Corollary 3.3 (dashed

red) for various sampling periods T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.16 State trajectory x[n] and limit cycle X ∗e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.17 Time evolution of the auxiliary state ξ[n]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.18 Obtained switching signal σ[n]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.19 Schematic of a three-cell converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.20 State trajectories for H2 control design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



3.21 Obtained switching signal for H2 control design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.22 State trajectories converging to the limit cycle X ∗e . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.23 Zoom showing the limit cycle X ∗e in steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.24 Discrete-time state ξ[n] for H∞ control design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.25 State trajectories for H∞ control design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1 Phase portrait of a trajectory x(t) along with some level sets Vt. . . . . . . . . . . . . . . . . . . 113

4.2 Level sets of the Lyapunov function evaluated along the trajectory x(t) (in blue). . . . . . . . . . 113

4.3 PMSM and inverter schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Graphical representation of polytope P and inscribed circumference. . . . . . . . . . . . . . . . . 120

4.5 Phase currents of a PMSM controled by switching rule (4.36). . . . . . . . . . . . . . . . . . . . . 126

4.6 Rotational velocity of a PMSM controled by switching rule (4.36) and desired reference ω∗ (dashed

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.7 Corresponding switching signal associated to the switching rule (4.36). . . . . . . . . . . . . . . . 127

4.8 Three-phase AC-DC power converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.9 Representation of X∗ (in red) as E ∩ H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.10 Graphical representation of polytope P and inscribed circumference. . . . . . . . . . . . . . . . . 135

4.11 Phase currents ia(t) (blue) and ib(t) (red) and steady-state references (dashed lines). . . . . . . . 138

4.12 Output voltage νo(t) and correspondent steady-state reference (dashed line). . . . . . . . . . . . 138

4.13 Switching signal σ(t) generated by the proposed switching function. . . . . . . . . . . . . . . . . 138

4.14 Steady-state response of current ia(t) (above) and voltage νo(t) (below) for several values of T . . 139

5.1 Buck-boost circuit schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Photo of the developed buck-boost converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Experimental response of a buck-boost converter controled by the switching function (3.10). . . . 144

5.4 Buck-boost and DC-motor circuit schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5 Friction torque in function of the rotational velocity. . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Photo of the considered DC motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7 Attainable rotational velocities for continuous and discrete-time switched control techniques. . . 147

5.8 Experimental response of a DC motor fed by buck-boost converter under several switching functions.148

5.9 State trajectory ξ under uV , obtained experimentally, and sets V and X . . . . . . . . . . . . . . . 148

5.10 Photo of the experimental setup for controlling the PMSM. . . . . . . . . . . . . . . . . . . . . . 150

5.11 Experimental and simulated rotational velocities for ω∗ = 100 rad/s. . . . . . . . . . . . . . . . . 151

5.12 Experimental and simulated phase current ia(t) correspondent to ω∗ = 100 rad/s. . . . . . . . . . 151

5.13 Switching signal for a constant ω∗ = 100 rad/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.14 Experimental rotational velocity ω(t) and correspoding reference ω∗(t). . . . . . . . . . . . . . . 152

5.15 Experimental phase currents ia(t) obtained considering the reference ω∗(t). . . . . . . . . . . . . 152



List of Tables

3.1 Switching states and corresponding applied voltages for the differential-drive robot. . . . . . . . . 80

3.2 System parameters adopted for the differential-drive robot. . . . . . . . . . . . . . . . . . . . . . 80

3.3 Volume comparison for several switching functions and system data. . . . . . . . . . . . . . . . . 90

3.4 Number of candidate limit cycles, upper bound J̄2 and actual cost J2 for several κ. . . . . . . . . 103

3.5 Values u1, u2, and u3 for each operation mode i . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1 Modes σ, switches state and phase voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 System data employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Absolute current peak and settling time for ω(t) obtained for several values of d. . . . . . . . . . 128

4.4 Modes σ, switch states and vector Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 System parameters adopted in simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1 Identified parameters for the built buck-boost converter. . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Identified parameters for the DC motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Quantitative comparison of switching functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Identified system parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



Nomenclature

Abbreviations

AC Alternating Current

ADC Analog-to-Digital Converter

BMI Bilinear Matrix Inequality

DAC Digital-to-Analog Converter

DC Direct Current

DTC Direct-Torque Control

FOC Field-Oriented Control

IC Integrated Circuit

IGBT Insulated Gate Bipolar Transistors

LMI Linear Matrix Inequality

LTI Linear Time-Invariant

PID Proportional-Integral-Derivative

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

RMS Root Mean Square

s.t. subject to

VSI Voltage Source Inveter

Latin Letters

C Switching surface

G Dynamical system

H2 The H2-norm

H∞ The H∞-norm



j Imaginary unit

J Quadratic performance cost

J2 H2 performance index

J∞ H∞ performance index

L Laplace transform

L c
2 Set of signals such that the L c

2 -norm exists

L d
2 Set of sequences such that the L d

2 -norm exists

Mc Subset of Metzler matrices for continuous-time

Md Subset of Metzler matrices for discrete-time

K Set of N first positive natural numbers {1, · · · , N}

N Set of natural numbers

N+ Set of positive natural numbers

N− Set of natural numbers and -1 (i.e. N− = N ∪ {−1})

R Set of real numbers

Rn×m Set of real matrices of dimension n×m.

Rn Set of real vectors of dimension n.

R+ Set of real positive numbers

R0+ Set of real nonnegative numbers

S Set of switching signals

Z Set of integers

Z Z transform

Oi i-th operating region

s Laplace domain variable

z Z domain variable

e A vector e = [1, · · · 1]′ of appropriate dimensions

k(n) n mod κ for some κ ∈ N+



N Number of available subsystems or operation modes

n Discrete-time instant

t Continuous-time instant

tn n-th sampling or switching instant

u Switching function

v Lyapunov function

w Exogenous input

x State variable

x∗ Reference value

xe Equilibrium point

y Measured output

z Controlled output

Greek Letters

δ Unit impulse signal

Γ(X) Gamma function

γi(X) i-th eigenvalue of matrix X

Λ Unit simplex, i.e. Λ =

{
λ ∈ RN : λi ≥ 0,

∑
i∈K

λi = 1

}
λ Convex combination vector in Λ

ω Angular frequency or velocity

Π A Metzler matrix inMc orMd

πki Element (k, i) of a Metzler matrix Π

σ Switching signal or sequence

σm(X) Maximum singular value of matrix X

θ Angular position or electrical angle

ξ Auxiliary state variable



Supercripts

X ′ Transpose of matrix X.

X∼ Conjugate transpose of matrix X.

Subscripts

λi i−th element of vector λ

X∗ Optimal or chosen X

Twz(·) Transfer matrix from input w to output z

Symbols

• Symmetric matrix block

∆x[n] Difference operator, i.e., ∆x[n] = x[n+ 1]− x[n]

‖ · ‖ Euclidean norm

| · | Absolute value of a scalar or cardinality of a set

‖ · ‖2 H2-norm for systems, L c
2 -norm for signals or L d

2 -norm for sequences

‖ · ‖∞ H∞-norm for systems or maxi∈{1,··· ,n}|xi| for a vector x ∈ Rn

⊗ Kronecker product between matrices

diag(X,Y ) Block diagonal matrix, whose elements are X and Y

tr(X) Trace of matrix X

Notations
n∏

k=n0

Xk Product over a set, i.e.,
∏n
k=n0

Xk = Xn0Xn0+1 · · ·Xn

He(X) Hermitian operator of a real matrix X, i.e, He(X) = X +X ′

x(t) Continuous-time signal

x[n] Discrete-time sequence
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Chapter 1

Introduction andMotivation

“Eu ando bem normal como se deve andar / Pois eu tenho que ir adiante.”
— Luiz Carlos Sá, Guarabyra & Zé Rodrix, Adiante (1973)

History of electrical switching devices starts alongside the invention of relays and vacuum tubes between

the 19th and 20th centuries. A more mature state was attained with the large-scale industrial production of

semiconductor devices, which provided scope for the development of many nowadays ubiquitous technologies.

Fields such as telecommunications, power generation and distribution, electrical machines and computing, widely

benefited from the ability of electrically controlling current through circuits. Nevertheless, switching phenomena

are not exclusive of electrical engineering creations. Valves, for instance, were employed since the late 17th

century as safety devices by the French physicist Denis Papin and for controlling steam flow in the Thomas

Savery’s early steam pump, see Farey (1827). Later and until now, these mechanic devices were used in all sorts

of combustion engines, hydraulic and pneumatic systems, fostering transportation, manufacturing and many

other industries.

The main motivation for the theoretical control studies carried out during this Ph.D. resides, however, in

the power electronics domain. Quoting Mohan et al. (2003), “the task of power electronics is to process and control

the flow of electric energy by supplying voltages and currents in a form that is optimally suited for user loads”.

To efficiently perform this task, it is crucial that devices called power converters employ semiconductor elements

such as bipolar junction transistors (BJTs), metal-oxide-semiconductor field effect transistors (MOSFETs), gate

turn-off thyristors (GTOs) and insulated gate bipolar transistors (IGBTs), among others. These elements work

as switches, whose state can be assigned as opened or closed by some logic controller. Recent advancements

in replacing silicon semiconductors by gallium nitride (GaN) or silicon carbide (SiC) ones have enhanced the

switching frequency and power ranges on which power converters can operate, as shown in Figure 1.1, presented

in Chow and Guo (2019). Despite this increase in the switching rate upper bound, reducing the overall number of

switching cycles is highly desirable in many applications, since power losses in semiconductors grow linearly with

the switching frequency. Regarding the control of these devices, the majority of the available techniques relies

upon the premise that the switching events happen arbitrarily fast, which might not be the case in many high

power applications, for instance high-voltage direct current (HVDC) systems, see Qin and Saeedifard (2013).

The mathematical modeling of switched power converters can be generally given in terms of switched

dynamical systems – a particular case of hybrid systems, wherein the system dynamics interact with discrete

events. Switched systems consist of a set of subsystems and a switching signal responsible for selecting one of

them to govern the system behavior at each instant of time. Some classical references on this topic are the

books Liberzon (2003); Sun and Ge (2011) and the surveys DeCarlo et al. (2000); Shorten et al. (2007); Lin

and Antsaklis (2009). Far beyond the power electronics domain, the interest in studying switched systems grew

in the past decades as they have shown to be relevant in contexts such as supervisory control Hespanha et al.

(2003), control of time-varying polytopic systems Deaecto et al. (2011b), fault-tolerant control Seron et al. (2008),

multi-agent systems Xiao and Wang (2008), and networked control systems Hespanha et al. (2007). As it will be



18

Figure 1.1: Power versus switching frequency for various power electronic devices, as in Chow and Guo (2019)

discussed later in this dissertation, the switching signal can act as a disturbance or a control variable. In this

work, the control case is particularly discussed and the switching function design is the goal in every presented

problem.

Control and stability for the subclass of switched linear systems have been extensively studied in the

literature in both time domains, see for instance Hespanha (2004); Geromel and Colaneri (2006a,b); Deaecto

et al. (2011a); Lin and Antsaklis (2009); Sun and Ge (2011); Fiacchini and Jungers (2014); Deaecto and Geromel

(2018). The general problem, in this case, is to assess stability of the origin, which is a common equilibrium

point among all subsystems. A more general subclass is that of switched affine systems, which are the principal

topic of interest in this dissertation, being capable of modeling, among other devices, several DC-DC power

converters, see Deaecto et al. (2010). These systems intrigue researchers due to the presence of affine terms

in their dynamic equation, responsible for the existence of a set of equilibrium points in the state-space that

are attainable by a suitable switching policy. This control problem is more involving since the main interest is

generally to stabilize the system towards an equilibrium point that is not common to any subsystem. For this

reason, as will be discussed, asymptotic stability is only possible in the continuous-time domain, and some results

are available in the literature for this case, see Bolzern and Spinelli (2004); Corona et al. (2007); Patino et al.

(2009); Trofino et al. (2009); Deaecto et al. (2010); Trofino et al. (2012); Scharlau et al. (2014); Deaecto and

Santos (2015); Albea et al. (2015); Deaecto (2016), among others. In these cases there is a costly price to be paid:

to assure asymptotic stability of a desired equilibrium point is the same as requiring that the system trajectories

remain fixed at this point; consequently, an arbitrarily high switching frequency is mandatory and the so-called

Fillipov solutions arise. It is not hard to imagine that several existing switches cannot operate in this scenario,

preventing these theoretical results to be implementable such as they are. Moreover, high switching frequencies

are not desirable since, as already mentioned, they lead to power losses. Efforts from the scientific community to

bound this frequency are various, see for instance Hetel and Fridman (2013), Deaecto et al. (2014) and Sanchez

et al. (2019a). In the general context of switched affine systems under limited switching frequency, asymptotic
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stability of an equilibrium point of interest is impossible to be obtained and practical stability is often addressed.

Part of the contributions in this dissertation relies on tackling this problem in the discrete-time domain,

where the switching rate is naturally limited. Besides intrinsic discrete-time systems, all continuous-time switched

affine models can be represented exactly as discrete-time ones by imposing, for example, a constant period of

time during which the switching signal is held constant. In this case, the responses of both systems, continuous

and discrete, are identical at the switching instants. See the references Deaecto et al. (2014); Souza et al. (2014);

Chen and Francis (2012) for more details about exact discretization. Unfortunately, for the class of discrete-time

switched affine systems, the control design is a problem to which the literature has not dedicated many efforts

up to now. In this sense, two approaches are developed in this dissertation. The first one deals with the design

of a state-dependent switching function to assure practical stability and minimize a set of attraction to where

the state trajectories are attracted. Subsequently, these results are generalized to cope with output feedback

control, see Egidio and Deaecto (nd). In both cases, the design conditions are based on a general quadratic

Lyapunov function and described in terms of linear matrix inequalities (LMIs). For the state-feedback case,

alternative conditions are also proposed based on Lyapunov-Metzler inequalities that are less conservative in

terms of conditions for the existence of a set of attraction, but not comparable to the previous ones with respect

to optimality, see Egidio and Deaecto (2019). It is important to remark that in practical stability studies, the

behavior of the trajectories inside the set of attraction cannot be assessed a priori and, therefore, nothing can be

concluded about performance in the steady state. To overcome this issue, a second approach is provided, which

consists in designing limit cycles and assuring their global asymptotic stability. Through this methodology, the

limit cycle is determined according to aspect of interest defined by the designer, for instance, the fundamental

frequency, amplitude and mean value of the trajectories in steady state. Moreover, due to the asymptotic

stability, classical performance indexes such as H2 and H∞ can be adopted and the transient response of the

system is taken into account in the switching function design, see Egidio et al. (2020). For this case, the proposed

design conditions are based on a time-varying periodic Lyapunov function and can be described in terms LMIs,

being simple to solve using classical optimization tools, see Boyd et al. (1994) for important aspects related to

LMIs.

Other contributions within this work concern switched nonlinear systems, whose dynamic equations depend

harmonically on a time-varying parameter. Precisely, the nonlinearities are in the form of trigonometric functions

that crucially impact the system behavior and naturally entails the study of trajectory tracking problems. For

an efficient switching function design, we propose more elaborate non-quadratic Lyapunov functions that are

able to capture the harmonic dependency of these systems to provide design conditions also given in terms

of LMIs. The goal is to suitably design the switching rule to asymptotically stabilize the system toward an

equilibrium trajectory that keeps part of the state at a constant reference while the remaining system variables

evolve periodically. The capability of these systems to model AC devices is the main motivation for these

studies. Indeed, a regular switched affine system can be used for AC power systems under constant AC frequency,

employing exosystems or auxiliary reference frames see, Sanchez et al. (2019b); Hadjeras et al. (2019). However,

these models might not be enough to capture AC power systems whose frequency varies, for example, when
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feeding or being fed by AC machines. Moreover, classical controllers for these systems are based on cascade

control loops, reference frame transformations and take into account modulation strategies. The proposed

switched approach controls the system variables in a single control loop and requires low computational effort.

Two applications in the power electronics domain are presented, namely, an AC-DC controlled rectifier, see Egidio

et al. (nd), and a permanent magnet synchronous machine fed by a voltage source inverter, see Egidio et al.

(2019). Regarding the latter, experimental validation is performed, highlighting the efficiency and applicability

of these results.

Finally, studying new control strategies for these classes of systems is highly relevant in the current

moment as society is moving towards the employment of sustainable and renewable energy sources, such as

photovoltaic, wind and other innovative sources, which depend drastically on efficient power conversion, see Bose

(2010). Moreover, energy storage and its wise utilization are critical for electrical and hybrid terrestrial or aerial

vehicles, which also heavily rely upon effective control of power converters, see Chan (2007); Shakhatreh et al.

(2019).

1.1 Organization

The organization of this dissertation obeys the following structure.

• Chapter 1: An introduction with practical and theoretical motivations and general information about this

work are presented.

• Chapter 2: Some classical contents are provided along the sections, regarding dynamical systems theory

and Lyapunov stability for the reader who is not familiarized with these contents. Additionally, well-known

results regarding switched systems that are relevant for the following chapters are discussed.

• Chapter 3: Novel results concerning global stability of discrete-time switched affine systems are presented.

Conditions for state or output-dependent switching function design are proposed to assure the existence

of a set of attraction, to where system trajectories are globally attracted. Afterward, methodologies for

controlling the steady-state behavior through the suitable design of a globally asymptotically stable limit

cycle are presented. In this context, the optimization of H2 and H∞ performance indexes is taken into

account in order to assure a suitable transient response.

• Chapter 4: New approaches to model and control particular classes of switched systems, capable of

modeling AC systems are discussed here. More specifically, two cases are studied regarding DC-AC and

AC-DC conversion. The first one regards the control of the switches in a voltage source inverter feeding a

permanent magnet synchronous machine, while the latter regards the rectification of a three-phase voltage

source. Trajectory tracking problems naturally arise as sinusoidal currents must be tracked.

• Chapter 5: Experimental results regarding the last two chapters are presented. More specifically, a

buck-boost DC-DC converter is used to control the rotational velocity of a DC motor and a voltage
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source inverter is employed to control a permanent magnet synchronous machine. The adopted switched

control strategy permits the control of these assemblies in a single control loop, contrasting with classical

methodologies where cascade controllers are required.

• Chapter 6: Discussions and perspectives regarding future works that should arise from this dissertation are

provided.

• Appendix A: Some mathematical tools, as lemmas and theorems, that are employed in our main results

are gathered in this appendix.

• Appendix B: A brief discussion about linear matrix inequalities and how some optimization problems in

this thesis were solved.

• Appendix C: Discussions about ellipsoids, their volumes and projections.

Figures, tables, examples and mathematical structures, such as equations, definitions, theorems, etc., are

numbered as they appear, per chapter. Hyperlinks are denoted by red text. To ease the navigation, each

reference is followed by a list of the pages in which they are cited. All simulations presented in examples were

performed by using Matlab and the optimization problems were solved using functions available in the Robust

Control Toolbox.
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Chapter 2

Preliminaries

“Se oriente, rapaz / Pela constelação do Cruzeiro do Sul.”
— Gilberto Gil, Oriente (1972)

This chapter is thoroughly dedicated to present important concepts upon which the main results of this

dissertation rely. Its contents are gathered from papers and books that have been previously published

and forms a brief review of dynamical systems analysis and performance in both, continuous and discrete-time

domains. The main purpose of this presentation is to enlighten colleagues who are being introduced to the

switched systems framework as well as help those who are already familiar with these ideas to recapitulate main

formalisms.

Firstly, classic stability conditions for general nonlinear autonomous systems are presented, introducing

the concept of Lyapunov stability, which is the main foundation of all results to be presented. After that, a

summary of linear systems stability and performance is presented. This is done under the convex optimization

point of view, that is, writing conditions as constraints expressed in terms of a linear matrix inequality

(LMI) or more, see Boyd et al. (1994) for further details. The reader may refer to Appendix B for an overview

of the main tools required for the full comprehension of this approach. Finally, results on switched systems

are gathered from the literature to date and presented as a motivational basis for the developments to come in

Chapters 3 and 4.

2.1 Nonlinear Systems

A general nx-th order nonlinear system in the continuous-time domain is defined by the vector differential

equation

ẋ(t) = g(x(t), t), x(0) = x0 (2.1)

where x : R0+ → Rnx is the continuous-time state vector, responsible to capture the entire system configuration

by putting together all the system variables, and g : Rnx × R0+ → Rnx is a locally Lipschitz function in x (see

Khalil (2002)) and measurable on t defining, at each instant of time t ∈ R0+, the evolution of the state x(t)

starting from an initial condition x0 ∈ Rnx . For the discrete-time domain this system is given as

x[n+ 1] = g(x[n], n), x[0] = x0 (2.2)

being x : N→ Rnx the discrete-time state vector and g : Rnx × N→ Rnx , the vector field defining its evolution

at every instant of time n ∈ N. For both time domains, the behavior of these systems is fully represented by the

dynamic equations (2.1) and (2.2).

The Euclidean space Rnx of order nx ∈ N+ whence the state vector takes values is called the state-space

and an arbitrary vector x ∈ Rnx is also referred to as a point. Naturally, the length of x ∈ Rnx is given by the

Euclidean norm ‖x‖ =
√

(x′x) and a distance between points x1, x2 ∈ Rnx is defined as ‖x1−x2‖. A function
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x(t) is called a system trajectory for the system (2.1) whenever x(t) is a solution of its dynamic equation for

some x0 ∈ Rnx . The same can be stated about a sequence x[n] regarding the discrete-time system (2.2). The

Lipschitz and measurable conditions over the vector fields for the continuous-time case assure the uniqueness

of these trajectories for each x0 ∈ Rnx (see Hale (1969); Khalil (2002)) while, for the discrete-time case, the

uniqueness is trivial.

Determining the behavior of a system trajectory is essential for a control theory study. Indeed, performance

and stability guarantees are the main metrics for evaluating a control system and, even though closed-form

solutions might not be available in most cases, being able to characterize growth rates, limit behaviors and other

aspects is usually enough within our context, see Luenberger (1979) for some discussions. To this end, let us first

define what an equilibrium point is and how can it be categorized, following definitions provided in Luenberger

(1979), Slotine et al. (1991) and Khalil (2002).

Definition 2.1 (Equilibrium point). A vector xe ∈ Rnx is an equilibrium point for a continuous-time
dynamical system (2.1) if, for all t ∈ R0+, it satisfies

g(xe, t) = 0 (2.3)

or for a discrete-time dynamical system (2.1) if, for all n ∈ N , it satisfies

g(xe, n) = xe (2.4)

Notice that, given this definition, we can conclude that whenever the system trajectory attains an

equilibrium point, it never leaves it in subsequent time instants unless a non-modeled dynamic or disturbance

take action. Formally, we have that if x(t0) = xe for some t0 ∈ R0+ then x(t) = xe, ∀t ≥ t0 in the continuous-time

domain, and that if x[n0] = xe for some n0 ∈ N+ then x[n] = xe, ∀n ≥ n0 in the discrete-time counterpart.

A nonlinear system can possess either none, one or several equilibrium points scattered or clustered over the

state-space. Each one of these points can be classified as stable or unstable depending on how the system

trajectories starting in its close neighborhood behave.

Definition 2.2 (Stable and unstable equilibrium points). An equilibrium point xe of a continuous-time system
is said to be a stable equilibrium point if and only if the following holds: for all R ∈ R+, there exists another
r ∈ R+ such that ‖x(t0)− xe‖ < r, t0 ∈ R0+ implies in ‖x(t)− xe‖ < R, ∀t ≥ t0. Otherwise, xe is an unstable
equilibrium point. This definition is analogous for discrete-time systems.

To illustrate these definitions, the following example recalls a classical (and somewhat controversial, see

Gilpin (1973)) ecological system.

Example 2.1 (The Hare-Lynx System). Consider the Lotka-Volterra model for prey-predator systems

ḣ(t) = h(t)(rh + chll(t)), h(0) = h0 (2.5)

l̇(t) = l(t)(rl + clhh(t)), l(0) = l0 (2.6)

where the nonnegative variables h(t) and l(t) represent, respectively, the hare and lynx populations sharing
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a habitat, rh > 0, rl < 0 are growth rates and chl < 0, clh > 0 are coupling constants. Considering a
state vector x(t) = [h(t) l(t)]′, this system has two equilibrium points xe1 = [0 0]′ and xe2 = [he le]

′,
with he = − rl

clh
, le = − rh

chl
. It is not hard to verify from Definition 2.2 that xe1 is unstable since for

x(0) = [r 0]′, r ∈ R+ there exists no R such that ‖x(t) − xe‖ < R, ∀t > 0. That is, in the absence of
predators (lynxes), the prey population grows indefinitely according to this model. However, xe2 is known
to be a stable equilibrium point and both prey and predator populations tend to orbit it, forming bounded
system trajectories. A phase portrait for rh = 0.7, rl = −0.2, chl = −0.03 and clh = 0.05 is presented in
Figure 2.1.
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Figure 2.1: Phase portrait for the Hare-Lynx problem.

The general definition of stability for equilibrium points allows us to identify particular cases of interest.

In fact, a stable equilibrium point is not required to attract every trajectory of the system regardless its initial

condition. Generally, one should only infer from stability that every system trajectory starting sufficiently close

to xe will have the distance ‖x(t)− xe‖ bounded by some scalar R. No further knowledge can be derived about

its steady-state behavior or how far away from xe can one choose the starting point x0. For that reason, let us

define specific types of stable equilibrium points.

Definition 2.3 ((Globally) asymptotically stable equilibrium point). An equilibrium point xe is said to be an
asymptotically stable equilibrium point of a dynamical system (2.1) if and only if there exists an r ∈ R+

for which every trajectory x(t) such that ‖x(t0) − xe‖ < r, t0 ∈ R0+ satisfies limt→∞ x(t) = xe. Moreover,
xe is said to be a globally asymptotically stable equilibrium point if that holds for every r ∈ R+. For a
discrete-time dynamical system (2.2) this definition is analogous.

Asymptotic stability of an equilibrium point is a stronger characteristic, imposing that nearby trajectories

will not only remain within a bounded distance to xe but will progressively approach it as time evolves.

Additionally, it is readily demonstrated by contradiction that the existence of a globally asymptotically stable

equilibrium point imposes that no other equilibrium point exists. Figure 2.2 illustrates possible system trajectories
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Figure 2.2: System trajectories evolving from x0 when xe is a stable (1), asymptotically stable (2) and unstable
(3) equilibrium point.

starting at some x0 near an equilibrium point xe of different natures.

Controllers capable of assuring asymptotic stability of some desired point xe are generally of great interest

under a control theory perspective, as this means that every system trajectory that gets close enough to xe will

converge to it. However, it is not always possible to design this kind of controllers, especially in the discrete-time

domain, as it will be clear in the next sections. Based on discussions in Vangipuram et al. (1990), a weaker

type of stability is defined in the sequel for a point that will be sometimes referred to as an equilibrium point,

although, rigorously, it does not satisfy Definition 2.1.

Definition 2.4 ((Globally) practically stable equilibrium point). A point xe is said to be a practically stable
equilibrium point of a dynamical system (2.1) if and only if there exists a pair r,R ∈ R+ for which every
trajectory x(t) satisfying ‖x(t0) − xe‖ < r, t0 ∈ R0+ fulfills ‖x(t) − xe‖ < R, ∀t > tn for some tn > t0.
Moreover, xe is said to be a globally pratically stable equilibrium point if that holds for every r ∈ R+. For
a discrete-time dynamical system (2.2) this definition is analogous.

Certainly, practical stability may not be the most desirable situation but it is, in many cases, sufficiently

satisfactory. This is a context-sensitive matter but, the quality of a practically stabilizing controller should be

generally evaluated according to the size and shape of the region to where the system trajectories are attracted

in steady state. Notice that the existence of a practically stable equilibrium point is linked to the existence of a

region in the state-space to where system trajectories are attracted and, once inside, they never leave it. This

region will be formally defined at an adequate moment.

2.1.1 Lyapunov Stability

Within this subsection, we discuss a powerful tool to study the stability of equilibrium points: the Lyapunov

Stability Theorem. The framework provided by this theorem, developed by the Russian mathematician

Aleksandr M. Lyapunov, is the basis upon which much of modern control theory holds for both time domains.

The key point of Lyapunov stability is that it allows for a function capable of roughly condensing information
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about a system behavior, without giving full account of details. In this sense, we use these functions to simplify

the search for a stability certificate. Nevertheless, a formal definition must precede the theorem statement.

Definition 2.5 (Lyapunov function). Considering an equilibrium point xe ∈ D, a function v : D ⊆ Rnx → R0+

is called a Lyapunov function for a continuous-time (or discrete-time) dynamical system (2.1) (or (2.2)) if
the following conditions hold simultaneously:

1. v is continuous over D.

2. v(x) = 0 if x = xe and v(x) > 0 otherwise.

3. v̇(x(t)) ≤ 0 (or ∆v(x[n]) ≤ 0), which means that it is non-increasing with time if x(t) (or x[n]) is a system
trajectory.

Moreover, if D is unbounded, v(x) must be radially unbounded1.

Lyapunov functions can be regarded as distance or energy functions that do not increase over time (or

when we allow them to do so, they must admit a non-increasing upper bound), guiding the system state towards

some sort of minimum value. Certainly, the existence of such function allows us to conclude that a system

trajectory starting in D will remain in D and when D is the whole state-space, the trajectory is not getting

arbitrarily far away from xe. The Lyapunov Stability Theorems for both time domains are presented below and

proofs are available in Luenberger (1979) and Khalil (2002).

Theorem 2.1 (Lyapunov Stability Theorem – Continuous-Time). Let xe ∈ D be an equilibrium point
for the continuous-time dynamical system (2.1). If there exists a Lyapunov Function v(x) as given in Definition
2.5 then xe is stable. Moreover, if v̇(x(t)) < 0, ∀x ∈ D \ {xe}, then xe is asymptotically stable. If D = Rnx ,
then the stability is global.

Theorem 2.2 (Lyapunov Stability Theorem – Discrete-Time). Let xe ∈ D be an equilibrium point for
the discrete-time dynamical system (2.2). If there exists a Lyapunov Function v(x) as given in Definition 2.5
then xe is stable. Moreover, if ∆v(x[n]) < 0,∀x ∈ D \ {xe}, then xe is asymptotically stable. If D = Rnx , then
the stability is global.

The following example, based on discussions in Luenberger (1979), presents a Lyapunov function.

Example 2.2 (A Lyapunov function). Consider again the Hare-Lynx system presented in Example 2.1.
The nonnegative function

v(h, l) = ph

(
h− he − he ln

( h
he

))
+ pl

(
l − le − le ln

( l
le

))
(2.7)

defined in the domain D = R2
+ is a Lyapunov Function for system (2.5)-(2.6) with respect to xe2 = [he le]

′

with ph = −(clh/chl)pl and pl > 0. Indeed, v(h, l) is continuous, nonnegative and v(h, l) = 0 uniquely for

1A radially unbounded function is a function such that ‖x‖ → ∞ =⇒ f(x)→∞.
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h = he and l = le. The demonstration that v̇(h, l) ≤ 0 for all x = [h l]′ ∈ D is done by evaluating

v̇(h, l) = ph

(
1− he

h

)
ḣ+ pl

(
1− le

l

)
l̇ = 0 (2.8)

showing that all conditions in Definition 2.5 hold and thus xe2 is stable according to Theorem 2.1.

For this last example, we can say that the Lyapunov function (2.7) is a stability certificate for the point

xe2 and system (2.5)-(2.6). However, for a general nonlinear system, finding a Lyapunov function for a stable

equilibrium point is not a trivial task. Fortunately, there are specific forms of Lyapunov function candidates

that might speed this search up for some classes of dynamical systems, sometimes providing a sufficiently limited

search domain. This means that, for given system classes, the problem of determining whether an equilibrium

point xe is stable or not is a decidable problem. In other words, there exists an algorithmic procedure capable of

finding a Lyapunov function, whenever there exists one, and determining the stability or instability of xe within

a finite amount on time. Some of these are presented in the following sections of this chapter.

2.2 Linear Time-Invariant Systems

The state-space representation of a Linear Time-Invariant System (LTI) of order nx ∈ N+ is given in the

continuous-time domain by the set of linear differential equations ẋ(t) = Ax(t) +Hw(t), x(0) = x0

z(t) = Ex(t) +Gw(t)
(2.9)

for which, x : R0+ → Rnx denotes the state vector, w : R0+ → Rnw represents an external input signal and

z : R0+ → Rnz is a controlled (or performance) output. The first equation defines, as (2.1), the behavior of

system trajectories and is called the dynamic equation. The second one, referred to as the output equation,

is used to determine the output of the system. An LTI system is fully described by the 4-tuple of matrices

Gc = (A,H,E,G), of suitable dimensions. This system presents a closed-form solution for any given initial

condition x0, see Chen (1995), defined by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Hw(τ)dτ (2.10)

Similarly, an LTI system in the discrete-time domain is given by the state-space representation x[n+ 1] = Ax[n] +Hw[n], x[n] = x0

z[n] = Ex[n] +Gw[n]
(2.11)

for which x : N→ Rnx is the state vector, w : N→ Rnw is the external input and z : N→ Rnz is the controlled

output. The closed-form solution for this system is given by

x[n] = Anx0 +

n−1∑
k=0

An−1−kHw[k] (2.12)

A classical alternative representation for an LTI system can be done in the frequency domain by means of
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its transfer function. Assuming null initial conditions and applying the Laplace Transform operator to (2.9)

and Z Transform operator to (2.11) yields, respectively, the continuous-time and discrete-time transfer functions

Twz(s) = E(sI −A)−1H +G (2.13)

Twz(z) = E(zI −A)−1H +G (2.14)

Both transfer functions are proper (or strictly proper) rational polynomial functions, that is, the ratio

between two polynomials such that the degree of the numerator is less than or equal to (strictly less than)

the degree of the denominator. The roots of the numerator and denominator are the zeros and the poles

of the transfer function, respectively. These functions are responsible to map the inputs onto the outputs in

the frequency domain. That is, consider for the continuous-time the Laplace Transforms L (w(t)) = ŵ(s) and

L (z(t)) = ẑ(s) while for the discrete-time, the Z Transforms Z (w[n]) = ŵ(z) and Z (z[n]) = ẑ(z). Then, the

following equalities are verified

Twz(s) =
ẑ(s)

ŵ(s)
(2.15)

Twz(z) =
ẑ(z)

ŵ(z)
(2.16)

It is important to remark that, although an LTI system is not often encountered in real-world, its model

is a fair approximation of a general nonlinear system around its equilibrium point. For deeper discussions on

linearization, see Slotine et al. (1991); Khalil (2002); Hespanha (2018) or, for Lusophones, Geromel and Korogui

(2011).

2.2.1 Stability

In this subsection, let us assume w = 0. Notice that, in this case, the origin is an equilibrium point of any

LTI system. Additionally, whenever A is regular for the continuous-time system or A − I is regular for the

discrete-time one, xe = 0 is the only equilibrium point in the state-space. As a consequence, an LTI system is

said to be a stable LTI system if its origin is stable.

There is no difficulty in assessing the stability of an LTI system by analyzing the eigenvalues of the matrix

A or the poles of its transfer function, which match each other when the minimal realization is considered. Indeed,

asymptotic stability is assured if and only if, for the continuous-time domain, Re(γi(A)) < 0, ∀i ∈ {1, · · · , nx}

or, for the discrete-time domain, |γi(A)| < 1, ∀i ∈ {1, · · · , nx}. However, the Lyapunov theory may also be used

to decide whether the origin of a linear system is a stable equilibrium. The following theorem presents some

necessary and sufficient conditions for global asymptotic stability in continuous-time.

Theorem 2.3 (LTI system stability – Continuous-time). Consider a continuous-time LTI system Gc =

(A,H,E,G) as given in (2.9) along with w(t) = 0 for all t ∈ R0+. These statements are equivalent:

1. The system Gc is globally asymptotically stable, that is, xe = 0 is a globally asymptotically stable equilibrium
point.

2. A is a Hurwitz stable matrix, that is, the eigenvalues of A satisfy Re(γi(A)) < 0, ∀i ∈ {1, · · · , nx}.

3. Every pole p of the system transfer function (2.13) satisfies Re(p) < 0.
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4. There exists one symmetric positive definite matrix P ∈ Rnx×nx solution of the continuous-time Lya-
punov equation

A′P + PA+Q = 0 (2.17)

for an arbitrary positive definite matrix Q ∈ Rnx×nx .

Proof: This proof will be split in 4 demonstrations of necessity, sufficiency or equivalence between the statements.

More specifically, let us show that 1≡ 2, 2≡ 3, 4=⇒1 and 4⇐=1.

1≡ 2 Notice that the solution (2.10) can be rewritten as

x(t) = V −1eDtV x(0) = V −1eRe(D)teIm(D)jtV x(0) (2.18)

where V and D = diag(γ1(A), · · · , γnx(A)) form the eigendecomposition of A = V −1DV . From this

equation, we can conclude that limt→∞ x(t) = 0 for any x0 ∈ Rnx if and only if Re(γi(A)) < 0 for all

i ∈ {1, · · · , nx}.

2≡ 3 To demonstrate this, let us show that the poles of the transfer function Twz(s) and the eigenvalues of A

coincide. Take the definition given in (2.13) and rewrite it as

Twz(s) =
1

det(sI −A)
(Eadj(sI −A)H +Gdet(sI −A)) (2.19)

This shows that every pole p of Twz(s) is also a root of det(sI −A) = 0, which is an eigenvalue of A. The

converse holds if Gc is in minimal realization.

4=⇒1 Let us assume that the continuous-time Lyapunov equation is satisfied by P > 0 for an arbitrary Q > 0.

Hence, a Lyapunov function for the LTI system Gc is the quadratic Lyapunov function

v(x(t)) = x(t)′Px(t) (2.20)

with time derivative given by

v̇(x(t)) = x(t)′(A′P + PA)x(t)

= −x(t)′Qx(t) < 0

for all x(t) 6= 0. Then, from Theorem 2.1 the equilibrium point xe = 0 is globally asymptotically stable.

4⇐=1 Assume that the origin is a globally asymptotically stable equilibrium point. Let us show that for an

arbitrary Q > 0 there exists P > 0 solution of (2.17) and it is given by

P =

∫ ∞
0

eA
′tQeAtdt (2.21)

This improper integral exists since, by assumption, condition 2 assures Re{γi(A)} < 0, ∀i ∈ {1, · · · , nx}.

Multiplying (2.21) to the right by a non-null vector x0 ∈ Rnx and to the left by its transpose yields

x′0Px0 =

∫ ∞
0

x(t)′Qx(t)dt > 0 (2.22)
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where x(t) = eAtx0 is the solution starting from x(0) = x0, which shows that P is positive definite. Now,

replacing the given P in the Lyapunov equation (2.17), we obtain

A′P + PA = A′
(∫ ∞

0

eA
′tQeAtdt

)
+

(∫ ∞
0

eA
′tQeAtdt

)
A

=

∫ ∞
0

d

dt
eA
′tQeAtdt = eA

′tQeAt
∣∣∣∞
0

= lim
t→∞

eA
′tQeAt −Q

= −Q (2.23)

where the last equality, arising from the fact that A is Hurwitz stable, reveals that P is a solution for the

Lyapunov equation.

Finally, the uniqueness of this solution is verified by contradiction, assuming another P̃ to solve A′P̃+P̃A =

−Q. Subtracting this equality from (2.17), we have

A′(P − P̃ ) + (P − P̃ )A = 0 (2.24)

which, multiplied to the left by eA
′t and to the right by its transpose, results in

eA
′t
(
A′(P − P̃ ) + (P − P̃ )A

)
eAt =

d

dt

(
eA
′t(P − P̃ )eAt

)
= 0 (2.25)

This last equality shows that the matrix eA
′t(P − P̃ )eAt is time-independent. Evaluating it for t = 0 and

t→∞ and equating both expressions provides

P − P̃ = lim
t→∞

eA
′t(P − P̃ )eAt = 0 (2.26)

demonstrating that P = P̃ .
�

This theorem deals with global asymptotic stability of LTI continuous-time systems and shows that the

only form of Lyapunov function to be investigated when trying to verify the asymptotic stability of these systems

is the quadratic one, given in (2.20). It surely alleviates the task of searching for a stability certificate as the set

of positive definite matrices P is a convex cone and the convex optimization framework can be readily employed.

Similar conclusions can be presented for discrete-time LTI systems, as the following theorem presents.

Theorem 2.4 (LTI system stability – Discrete-time). Consider a discrete-time LTI system Gd = (A,H,E,G)

as given in (2.11) along with w[n] = 0 for all n ∈ N. These statements are equivalent:

1. The system Gd is globally asymptotically stable, that is, xe = 0 is a globally asymptotically stable equilibrium
point.

2. A is a Schur stable matrix, that is, the eigenvalues of A satisfy |γi(A)| < 1, ∀i ∈ {1, · · · , nx}.

3. Every pole p of the system transfer function (2.14) satisfies |p| < 1.

4. There exists one symmetric positive definite matrix P ∈ Rnx×nx solution of the discrete-time Lyapunov
equation
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A′PA− P +Q = 0 (2.27)

for an arbitrary positive definite matrix Q ∈ Rnx×nx .

Proof: This proof is again split in 4 demonstrations of 1≡ 2, 2≡ 3, 4=⇒1 and 4⇐=1.

1≡ 2 Notice that the solution (2.12) can be rewritten as

x[n] = V −1DnV x[0] (2.28)

where V and D = diag(γ1(A), · · · , γnx(A)) form the eigendecomposition of A = V −1DV . From this

equation we can conclude that limn→∞ x[n] = 0 for any x0 ∈ Rnx if and only if |γi(A)| < 1 for all

i ∈ {1, · · · , nx}.

2≡ 3 This is analogous to the demonstration presented in Theorem 2.3 and, therefore, omitted.

4=⇒1 Let us assume that the discrete-time Lyapunov equation is satisfied by P > 0 for an arbitrary Q > 0.

Hence, a Lyapunov function for the LTI system Gd is also the quadratic Lyapunov function

v(x[n]) = x[n]′Px[n] (2.29)

with the difference operator given by

∆v(x[n]) = x[n]′(A′PA− P )x[n]

= −x[n]′Qx[n] < 0

for all x[n] 6= 0. Then, from Theorem 2.2 the equilibrium point xe = 0 is globally asymptotically stable.

4⇐=1 Assume that the origin is a global asymptotically stable equilibrium point. Let us show that an arbitrary

Q > 0 there exists P > 0 solution of (2.27) and it is given by

P =

∞∑
n=0

(A′)nQ(A)n (2.30)

Observe that this series converges since, by assumption, condition 2 assures |γi(A)| < 1, ∀i ∈ {1, · · · , nx}.

Multiplying (2.30) to the right by a non-null vector x0 ∈ Rnx and to the left by its transpose yields

x′0Px0 =

∞∑
n=0

x[n]′Qx[n] > 0 (2.31)

where x[n] = Anx0 is the solution starting from x[0] = x0, which shows that P is positive definite. Now,

replacing the given P in the Lyapunov equation (2.27), we obtain

A′PA− P = A′

( ∞∑
n=0

(A′)nQ(A)n

)
A−

∞∑
n=0

(A′)nQ(A)n

= −(A′)0Q(A)0

= −Q,
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showing that P is a solution for the Lyapunov equation. The uniqueness of this solution is once more

verified by contradiction, assuming another P̃ to solve A′P̃A− P̃ = −Q. Subtracting this equality from

(2.27), we have

A′(P − P̃ )A− (P − P̃ ) = 0 (2.32)

which, multiplied to the left by (A′)n, to the right by (A)n and summed from n = 0 up to infinity, provides

∞∑
n=0

(A′)n+1(P − P̃ )(A)n+1 −
∞∑
n=0

(A′)n(P − P̃ )(A)n = −(A′)0(P − P̃ )(A)0 = 0 (2.33)

demonstrating that P = P̃ . �

2.2.2 H2 and H∞ Performance

Now that stability conditions have been presented for LTI systems, we can formulate performance metrics that

will serve as a basis for more general indices to be later defined. To this end, it is important to define measures

for trajectories in both time domains as follows.

Definition 2.6 (L c
2 -norm). The L c

2 -norm of a continuous vector function f : R0+ → Rm is defined as

‖f‖2 =

(∫ ∞
0

f(τ)′f(τ)dτ

)1/2

(2.34)

and the set of functions f such that this integral exists is called L c
2 space.

Definition 2.7 (L d
2 -norm). The L d

2 -norm of a discrete vector function f : N→ Rm is defined as

‖f‖2 =

( ∞∑
n=0

f [n]′f [n]

)1/2

(2.35)

and the set of functions f such that this series converges is called L d
2 space.

From this point, continuous and discrete-time domains will be treated separately to avoid troublesome

notations.

Two classic measures for performance of an LTI system in optimal control theory are the H2 and H∞
norms. These indexes are defined in the frequency domain for a globally asymptotically stable continuous-time

linear system Gc and can be equivalently rewritten in the time domain after some algebraic manipulations.

Considering G = 0 and x(0) = 0, the system Gc presents a strictly proper transfer function Twz(s) and its H2

norm is defined as an integral over the imaginary axis given by

‖Gc‖2 =

(
1

2π

∫ ∞
−∞

tr(Twz(jω)∼Twz(jω))dω

)1/2

(2.36)

From the Parseval’s theorem (see Oppenheim et al. (1997)), equality (2.36) squared provides

‖Gc‖22 =

∫ ∞
0

tr(h(t)h(t)′)dt (2.37)

with h(t) defining the impulse response of Gc as the inverse Laplace transform h(t) = L −1(Twz(s)). Notice

that the linear nature of the system allows to rewrite this expression by considering inputs w(t) = ekδ(t), k ∈
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{1, · · · , nw} where δ(t) is the unitary impulse and ek is the k-th vector of the standard basis of Rnw . As done in

Doyle et al. (1989), for each of these impulsive inputs, zk(t) = EeAtHek denotes the associated outputs satisfying

‖Gc‖22 =

nw∑
k=0

∫ ∞
0

zk(t)′zk(t)dt

=

nw∑
k=0

e′kH
′
(∫ ∞

0

eA
′tE′EeAtdt

)
Hek

= tr(H ′PoH) (2.38)

where the matrix Po =
∫∞

0
eA
′tE′EeAtdt is the observability gramian, the solution of the continuous-time

Lyapunov equation (2.17) for Q = E′E. Due to the circularity of the trace operator2, it is possible to

formulate a dual procedure to evaluate ‖Gc‖2 as

‖Gc‖22 = tr

(
H ′
∫ ∞

0

eA
′tE′EeAtdtH

)
= tr

(
E

∫ ∞
0

eAtHH ′eA
′tdtE′

)
= tr(EPcE

′) (2.39)

where the matrix Pc =
∫∞

0
eAtHH ′eA

′tdt is the controllability gramian, satisfying the continuous-time

Lyapunov equation APc + PcA
′ +HH ′ = 0. At this point, we are able to state the first performance-related

theorem of this dissertation.

Theorem 2.5 (LTI H2 performance – continuous-time). Consider a continuous-time LTI system Gc given
by (2.9). The H2 norm of the system can be exactly computed by the following procedures.

1. From the observability or controllability gramians, Po or Pc, we have

‖Gc‖2 =
√

tr(H ′PoH) =
√

tr(EPcE′) (2.40)

2. From the integration, we have

‖Gc‖2 =

∫ ∞
0

tr(h(t)h(t)′)dt (2.41)

3. From the limit solution of the primal convex optimization problem

‖Gc‖22 = inf
P>0

tr(H ′PH) s.t. (2.42)

A′P + PA+ E′E < 0 (2.43)

4. From the limit solution of the dual convex optimization problem

‖Gc‖22 = inf
S>0

tr(ESE′) s.t. (2.44)

AS + SA′ +HH ′ < 0 (2.45)
2The circularity property of tr(·) assures that for any matrices A,B of adequate dimensions tr(AB) = tr(BA).
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Proof: The first procedure is verified from equations (2.38) and (2.39), the second one comes from the time-

domain definition (2.37) and both, third and fourth, from the fact that the optimal solutions to the indicated

optimization problems satisfy the Lyapunov equations A′P + PA+ E′E = −εI and AS + SA′ +HH ′ = −εI,

respectively, for a precision ε > 0. �

Control theory advancements in the last decades have been largely explored formulations that are similar

to those given in the optimization problems (2.42) and (2.44). One of the key observations that allowed these

advancements is the fact that a constraint like (2.43) or (2.45), called a linear matrix inequality or an LMI,

defines a convex solution set and, thus, casts an optimization problem which is efficiently3 decidable. According

to Boyd et al. (1994), developments of interior-point algorithms in the late 1980’s and early 1990’s, for example in

Nesterov and Nemirovskii (1994), allowed the existence nowadays of some off-the-shelf toolboxes for numerically

solving an extensive amount of control problems. Again, the reader is invited to visit Appendix B for further

details about this topic.

Let us now take the same LTI system Gc, considering the proper or strictly proper transfer function Twz(s)

and a generic non-null input w(t) ∈ L c
2 . The H∞ norm of this system is defined as

‖Gc‖∞ = sup
ω∈R

σm(Twz(jω)) (2.46)

where σm(·) returns the maximum singular value of a matrix. Notice that, evaluating ‖z‖22 for a generic input

w(t) 6= 0 with Laplace transform given by L (w(t)) = ŵ(s), we have

‖z‖22 =

∫ ∞
0

z(t)′z(t)dt

=
1

2π

∫ ∞
−∞

ŵ(jω)∼Twz(jω)∼Twz(jω)ŵ(jω)dω

≤ sup
ωs∈R

1

2π

∫ ∞
−∞

ŵ(jω)∼Twz(jωs)
∼Twz(jωs)ŵ(jω)dω

≤ ‖Gc‖
2
∞

2π

∫ ∞
−∞

ŵ(jω)∼ŵ(jω)dω

= ‖Gc‖2∞‖w‖22 (2.47)

where the second equality holds from Parseval’s Theorem (see Oppenheim et al. (1997)) and from (2.15), the first

inequality is a consequence of the sup operator, the next one holds from the upper-bound provided in Lemma

A.1 together with (2.46) and, finally, the last equality is again a consequence of Parseval’s Theorem. This last

derivation allows us to conclude that for all w(t) ∈ L c
2

‖z‖22 ≤ ρ‖w‖22 ⇐⇒ ‖Gc‖2∞ ≤ ρ (2.48)

for some ρ ∈ R+. For this reason, the H∞ norm can also be calculated as

‖Gc‖∞ = max
w∈L c

2 \{0}

‖z‖2
‖w‖2

(2.49)

The next theorem can now be expounded.
3By efficiently, it is meant “with polynomial time complexity”.
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Theorem 2.6 (LTI H∞ performance – continuous-time). Consider a continuous-time LTI system Gc given
by (2.9). The H∞ norm of the system can be computed by the following procedures.

1. From the numerical evaluation of its definition (2.46)

2. From ‖Gc‖2∞ = ρ∗ where ρ∗ is the limit solution of the primal convex optimization problem

ρ∗ = inf
P>0,ρ>0

ρ s.t. (2.50)

A
′P + PA • •
H ′P −ρI •
E G −I

 < 0 (2.51)

3. From ‖Gc‖2∞ = ρ∗ where ρ∗ is the limit solution of the dual convex optimization problem

ρ∗ = inf
S>0,ρ>0

ρ s.t. (2.52)

AS + SA′ • •
H ′ −I •
ES G −ρI

 < 0 (2.53)

Proof: The first procedure is the very own definition of the H∞ norm. Now take into account a quadratic

Lyapunov function v(x(t)) = x(t)′Px(t). Evaluating its time derivative, one can write the equation

v̇(x(t)) =

x(t)

w(t)

′ A′P + PA+ E′E •

H ′P +G′E G′G− ρI

x(t)

w(t)

− z(t)′z(t) + ρw(t)w(t) (2.54)

which was obtained by summing and subtracting z(t)′z(t)− ρw(t)w(t) for some ρ ∈ R+. Notice that applying

the Schur Complement Lemma (see Appendix A.3) with respect to the last diagonal block of (2.51) shows that

this constraint is equivalent to A′P + PA+ E′E •

H ′P +G′E G′G− ρI

 < 0 (2.55)

which, multiplying by [x(t)′ w(t)′] to the left and by its transpose to the right, provides

v̇(x(t)) < −z(t)′z(t) + ρw(t)′w(t) (2.56)

Integrating this last equation from t = 0 up to t→∞, yields∫ ∞
0

v̇(x(t))dt < −
∫ ∞

0

z(t)′z(t)dt+

∫ ∞
0

ρw(t)′w(t)dt

v(x(t))
∣∣∣∞
0
< −‖z‖22 + ρ‖w‖22

0 < −‖z‖22 + ρ‖w‖22 (2.57)

since v(x(0)) = 0 (from x(0) = 0) and limt→∞ v(x(t)) = 0, because Gc is asymptotically stable and ‖w‖2 exists.

From the equivalent statements in (2.48), this shows that the infimum with respect to ρ shall coincide with the

square H∞ norm ‖Gc‖2∞. Finally, the primal and dual problems are equivalent taking S = ρP−1 what can be
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verified by multiplying (2.51) to both sides by diag(S, I, ρI). �

The above theorem concludes the study on H2 and H∞ norms for continuous-time LTI systems. Similarly,

we start the discussion about the norms for discrete-time LTI systems, given by the state-space realization

(2.11) evolving from a null initial condition, i.e. x[0] = 0. Consider a discrete-time LTI system Gd with transfer

function Twz(z). The H2 norm of Gd is defined in the frequency domain as the integral over the unit circle of

the complex plane given by

‖Gd‖2 =

(
1

2π

∫ π

−π
tr(Twz(e

jω)∼Twz(e
jω))dω

)1/2

(2.58)

From the Parseval theorem (see Oppenheim and Schafer (2014)), equality (2.58) squared provides

‖Gd‖22 =

∞∑
n=0

tr(h[n]h[n]′) (2.59)

with h[n] defining the impulse response of Gd as the inverse Z transform h[n] = Z −1(Twz(z)). Notice again

that the linear nature of the system allows rewriting this expression by considering inputs w[n] = ekδ[n], k ∈

{1, · · · , nw} where δ[n] is the unitary discrete-time impulse and ek is the k-th vector of the standard basis of Rnw .

In a similar fashion to the continuous-time case, for each of these impulsive inputs, denote zk[n] the associated

output satisfying

‖Gd‖22 =

nw∑
k=0

∞∑
n=0

zk[n]′zk[n] (2.60)

Analogous developments to (2.38) using zk[n] = EAn−1Hek, n ≥ 1 and zk[n] = Gek, n = 0, lead to an

alternative manner to evaluate this norm through gramians. Indeed, one has

‖Gd‖22 = tr(H ′PoH +G′G) = tr(EPcE
′ +GG′) (2.61)

where Po and Pc are, respectively the observability gramian and the controllability gramian, satisfying

the Lyapunov equations A′PoA − Po + E′E = 0 and APcA′ − Pc + HH ′ = 0. Hence, we can state the next

theorem.

Theorem 2.7 (LTI H2 performance – discrete-time). Consider a discrete-time LTI system Gd given by
(2.11). The H2 norm of the system can be exactly computed by the following procedures.

1. From the observability or controllability gramians, Po or Pc, we have

‖Gd‖2 =
√

tr(H ′PoH +G′G) =
√

tr(EPcE′ +GG′) (2.62)

2. From the summation, we have

‖Gd‖2 =

∞∑
n=0

tr(h[n]h[n]′) (2.63)

3. From the limit solution of the primal convex optimization problem

‖Gd‖22 = inf
P>0

tr(H ′PH +G′G) s.t. (2.64)

A′PA− P + E′E < 0 (2.65)
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4. From the limit solution of the dual convex optimization problem

‖Gd‖22 = inf
S>0

tr(ESE′ +GG′) s.t. (2.66)

ASA′ − S +HH ′ < 0 (2.67)

Proof: This proof is analogous to the one of Theorem 2.5 and is, thus, omitted. �

Regarding the H∞ performance, the H∞ norm norm is defined for the same system Gd, evolving from

null initial conditions, by the maximum

‖Gd‖∞ = max
θ∈[−π,π]

σm(Twz(e
jθ)) (2.68)

Through equivalent reasoning to the one presented in the continuous-time case, this norm can be shown to satisfy

‖z‖22 ≤ ρ‖w‖22 ⇐⇒ ‖Gd‖2∞ ≤ ρ (2.69)

for all pair of trajectories z[n] and w[n] ∈ L d
2 \ {0} and some ρ ∈ R+. Hence, the H∞ may also be given as

‖Gd‖∞ = max
w∈L d

2 \{0}

‖z‖2
‖w‖2

(2.70)

The following theorem presents equivalent manners to evaluate this norm.

Theorem 2.8 (LTI H∞ performance – discrete-time). Consider a discrete-time LTI system Gd given by
(2.11). The H∞ norm of the system can be computed by the following procedures.

1. From the numerical evaluation of its definition (2.68)

2. From ‖Gd‖2∞ = ρ∗ where ρ∗ is the limit solution of the primal convex optimization problem

ρ∗ = inf
P>0,ρ>0

ρ s.t. (2.71)


P • • •
0 ρI • •
PA PH P •
E G 0 I

 > 0 (2.72)

3. From ‖Gd‖2∞ = ρ∗ where ρ∗ is the limit solution of the dual convex optimization problem

ρ∗ = inf
S>0,ρ>0

ρ s.t. (2.73)


S • • •
0 ρI • •
SA′ SE′ S •
H ′ G′ 0 I

 > 0 (2.74)

Proof: The proof follows similar steps as in Theorem 2.6 and is, therefore, omitted. �
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2.2.3 Sampled-Data LTI Systems

At this moment, let us point out some facts about sampled-data LTI systems. These systems, denoted by

Gsd, consist of a continuous-time LTI system and a set of sampling instants {t0, t1, · · · } satisfying t0 = 0 and

tn+1 > tn, for all n ∈ N. The main difference between these systems and generic continuous-time systems is that

some of its signals satisfy

s(t) = s(tn), ∀t ∈ [tn, tn+1) (2.75)

that is, signals whose values are held constant between successive sampling instants. These signals can be

inputs, outputs or both of them and are generally related to the fact that their values are being sampled by

an analog-to-digital converter (ADC) or held constant by an digital-to-analog converter (DAC). Scenarios of

this type arise typically in contexts as networked control systems (see Hespanha et al. (2007)) where analog

signals must be sampled to be sent over through a digital network, and general digital control systems, where a

microprocessor samples continuous-time signals to compute outputs that are kept constant until an updated

sample is available. A particular case of interest considers uniformly distributed sampling instants, which take

into account a constant sampling period T = tn+1 − tn for all n ∈ N. For these cases, considering the input w(t)

of the form (2.75), one may define an equivalent discrete-time system Gd which models exactly the dynamics of

the sampled-data system Gsd at {t0, t1, · · · }. Such a procedure is derived by taking the solution (2.10) evaluated

between sampling instants. That is,

x(tn+1) = eA(tn+1−tn)x(tn) +

(∫ tn+1

tn

eA(tn+1−ψ)dψ

)
Hw(tn)

= eATx(tn) +

(∫ T

0

eAτdτ

)
Hw(tn) (2.76)

where, in the second term of the sum, we have made the change of variables τ = tn+1 − ψ. Choosing the

discrete-time state x[n] = x(tn), w[n] = w(tn) and z[n] = z(tn), we can describe a discrete-time linear system in

the form (2.11), whose response is exactly equal to Gsd at sampling instants. Therefore, the discrete-time system

is given by Gd = {Ad, Hd, E,G} with

Ad = eAT , Hd =

(∫ T

0

eAτdτ

)
H (2.77)

which can be calculated for a nonsingular A as Hd = A−1(eAT − I)H. A discrete-time system obtained

by such manner is called a discretized system and this specific procedure is defined as a step-invariant

discretization since it preserves exactly the value of the step response (and, therefore, every other system

response for piecewise constant inputs as (2.75)) at sampling instants.

Even though this discretization procedure assures that z[n] = z(tn), it does not assure the equivalence

between the L d
2 and L c

2 norms of the discrete and continuous-time outputs. Consequently, a discrete-time

control project that makes conclusions about the L d
2 norm of z[n] may not lead to the same results regarding the

continuous-time L c
2 norm. To overcome this issue, reference Chen and Francis (2012) presented a discrete-time
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output vector zd[n] such that ‖zd‖2 = ‖z‖2. This output is defined as

zd[n] = Edx[n] +Gdw[n] (2.78)

such that [Ed Gd] is the Cholesky decomposition of the integral

∫ T

0

eA ′τE ′E eA τdτ =

E′d
G′d

E′d
G′d

′ (2.79)

with

A =

A H

0 0

 , E =
[
E G

]
(2.80)

delivering the discretized system Gd = {Ad, Hd, Ed, Gd}. For the sake of efficiency, matrices Ad and Hd can be

also calculated as Ad Hd

0 I

 = eA T (2.81)

The procedure to obtain this system is called a norm-equivalent discretization as it guarantees the equivalence

‖zd‖2 = ‖z‖2 (2.82)

The demonstration of this equivalence can be done by the definition of the L c
2 -norm of the continuous-time

signal ‖z(t)‖2 and the reader can refer to Chen and Francis (2012) for further details.

2.3 Switched Systems

Let us now briefly discuss some definitions and characteristics regarding switched systems, the main purpose

of this thesis. Roughly, these systems are composed of a finite set of dynamic equations and some logic that

chooses one of them to define the time evolution of the system state. A general switched system is given for

both time domains by the state-space representations

ẋ(t) = gσ(t)(x(t), t), x(0) = x0, (2.83)

x[n+ 1] = gσ[n](x[n], n), x[0] = x0, (2.84)

where, σ : R0+ → K = {1, · · · , N} is for the continuous-time domain a switching signal and σ : N→ K, for

the discrete-time, is a switching sequence, indistinctly referred to as switching laws. In both time domains, σ

is responsible for choosing one out of N vector fields, composing the finite set {g1, · · · , gN}, at each instant of

time, to define the right-hand side of the dynamical equation. Notice that, for the continuous-time case, gi, i ∈ K

must be locally Lipschitz function in x and measurable in t, so the system admits a unique solution, see Liberzon

(2003). These vector fields define the subsystems {Gs1, · · · ,GsN} available to be activated by the switching law.

As discussed in Hespanha (2004), the main distinction between these formulations and the generic nonlinear

systems given in (2.1) and (2.2) is the existence of the switching law σ along with the admissible switching set
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S which, for the continuous-time, defines all possible switching signals σ(t) ∈ S and, for the discrete-time, all

possible switching sequences σ[n] ∈ S. Therefore, while the study of (2.1) and (2.2) is oriented towards the

solution evolving from a given initial condition, the switched systems framework considers the set of possible

solutions as σ ranges over S or some proper subset, which can create unexpected nonlinear behaviors. Indeed,

(2.83) and (2.84) become (2.1) and (2.2) if S is restricted to a singleton set4.

It is not hard to notice that switched systems form a special class of hybrid systems, where continuous-time

or discrete-time dynamics interact with discrete events, in our case, the switching. Naturally, some researchers

studying switched systems might decide to employ hybrid system formulations, see Branicky (1998) for some

discussion or Sanchez et al. (2019a) as an example.

Often, a switched control system problem emerges when the switching law is constrained to belong to some

set Ss ⊂ S. This is generally the case when considering dwell-time or some other structures for a switching

signal. This topic will be recalled at an opportune moment.

According to Liberzon (2003), a classical book about switched systems, the nature of the switching law

can be classified as one of the following:

• state-dependent versus time-dependent

• autonomous versus controlled

A state-dependent switching law is the one whose switching events occur as a function of the state

while a time-dependent switching law is governed by the time. Notice that every state-dependent switching

law can be rewritten as a time-dependent one by suitably evaluating a priori (numerically, for example) the

corresponding system trajectory. However, the converse does not hold. A state-dependent switching function is

linked to the existence of switching surfaces C. These surfaces partition the state-space in several subsets

called operating regions, each of which has an associated subsystem i ∈ K. The i-th operating region is

defined as Oi = {x ∈ Rnx : σ(x) = i, i ∈ K}. Therefore, when the state trajectory hits a switching surface its

dynamic behavior is expected to change. It is important to remark that the formulation presented in Liberzon

(2003) allows for a structure called the reset map, which is not considered in our context.

Moreover, an autonomous switching law allows no way to design the mechanism that will orchestrate

the switching events. This is analogous to the notion of autonomous systems that admit no input. On the other

hand, a controlled switching law can be defined by a designer, which is generally done to assure stability or

performance. Notice that both cases can be state or time-dependent. For instance, an autonomous switching

law can be either predetermined by a state and/or time-dependent switching logic. In the same way, a designer

can always assign a state and/or time-dependent switching function to govern σ. The next illustrative example

explores the fact that multiple switching laws can coexist in the same system and how this phenomenon is

frequently found in our everyday life.

4A singleton set is a set with cardinality 1, i.e., containing a single element.



42 2.3. SWITCHED SYSTEMS

Example 2.3 (The Refrigerator). Consider a refrigerator model, adapted from Angeli and Kountouriotis
(2011), described as a continuous-time switched system given by

θ̇(t) = −aσ1(t)(θ(t)− θ̂σ1(t)σ2(t)), θ(0) = θ0 (2.85)

where θ(t) is the current temperature at a point inside the refrigerator. The value θ̂11 is the equilibrium
temperature of this point when the cooling device is kept functioning with the door closed, θ̂21 is the
equilibrium temperature for the door open and the cooling functioning and, finally, θ̂12 and θ̂22 are the
equilibrium temperatures with the cooling turned off when the door is closed or open, respectively. The
value aσ1

is a system parameter based on thermal insulation and thermal mass. Notice the presence of
two switching signals σ1(t) ∈ K1 = {1, 2} and σ2(t) ∈ K2 = {1, 2}. The first one corresponds to whether
the refrigerator door is closed (σ1(t) = 1) or open (σ1(t) = 2), which defines two parameters a1 and a2,
respectively. The second switching signal determines when the cooling device must be turned on (σ2(t) = 1)
or off (σ2(t) = 2) and is regarded as a control variable.

Notice that σ1(t) is an autonomous switching signal that is time-dependent as it changes exclusively
at the instants for which the door is open or closed. However, σ2(t) is a control input that can be
suitably orchestrated to stabilize the system temperature around a desired reference θe. Consider that the
temperature is measured in degrees Celsius [◦C] and the time, in minutes [min]. Let us suppose θ̂11 = −40,
θ̂21 = 8, θ̂12 = θ̂22 = 20, a1 = 2.5× 10−4 and a2 = 10−2. Starting from θ0 = 4, two methodologies of control
were chosen to regulate θ(t) around θe = 5. The first one is a hysteresis based switching function

σ2(t) = uh(θ(t)) =


1, if θ > 6

2, if θ < 4

σ2(t−), otherwise
(2.86)

while the second one is a switching function based on the average system, given as

σ2(t) = ua(t) =

{
1, if (t mod 4) < 1

2, otherwise
(2.87)

which turns on the cooling for 25% of time.
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Figure 2.3: Temperature trajectories under switching function uh(θ(t)) (left) and ua(t) (right).

System trajectories under both control functions and the corresponding switching signals were
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obtained via numerical simulations and are provided in Figure 2.3, assuming that the door was open for 10

minutes after 40 minutes from the initial instant t = 0 and remained closed for all the subsequent instants.
Intuitively, the state-dependent switching function uh(θ(t)) may overcome the time-dependent one since
uh(θ(t)) can benefit from important information about the system state to which ua(t) has no access.
Finally, notice that uh(θ(t)) is rigorously defined as both state and time-dependent since the hysteresis
requires knowledge about the system state in previous instants of time.

This example presented a system with two switching signals σ1 and σ2 performing different roles. Indeed, one

of them is designed to control a system variable, while the other acts as a disturbance, impairing the proper

operation of the device. Moreover, notice that different choices for the switching function u(·) to govern the

switching signal yielded notably distinct behavior. All switched control problems presented in the next chapters

share in common the search for an optimal or sub-optimal switching control u(·) to govern σ.

A possible question that may arise at the beginning of Example 2.3 is whether a system with multiple

switching laws {σ1, · · · , σM} can be written in the general form (2.83) or (2.84). In fact, this can always be done

by defining a new augmented switching law σ̃ = (σ1, · · · , σM ) and defining the vector fields gi1···iM for every

combination of subsystems (i1, · · · , iM ) ∈ K1 × · · · ×KM .

An important theoretical aspect of continuous-time switched systems as (2.83) is the fact that the number

of switching events might be infinite within a finite amount of time. The so-called Zeno Behavior (see Liberzon

(2003); Goebel and Sanfelice (2012)), is an example of this phenomenon, possibly leading to some unexpected

system behaviors. Indeed, arbitrarily fast switching among subsystems can force the system trajectory to evolve

according to an extra dynamics, different from those of the isolated subsystems. For state-dependent switching

this might occur when the switching trajectory x(t), evolving from x(0) reaches the switching surface C separating

two operating regions, for instance, O1 and O2. If C is attained at a point x(th) for some th ≥ 0 such that the

vector fields g1(x(th), th) and g2(x(th), th) are oriented towards the operating regions O2 and O1, respectively,

then the trajectory “slides” on C. This behavior is illustrated in Figure 2.4 and the segment of the switching

surface C which produces this “sliding” evolution is called a sliding mode or a sliding surface.

Regarding time-dependent switching laws, sliding modes also occur in a limit case. Consider the periodic

switching function

σ(t) = ua(t) =

 1, if (t mod Ta) < αTa

2, otherwise
(2.88)

C

O1

O2

•x0

Figure 2.4: State trajectory “sliding” on the switching surface C.
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where the period Ta ∈ R+ and the scalar α ∈ [0, 1] are given. Taking into account that the function gσ(t)(x(t), t)

is piecewise continuous with respect to t, a solution to the differential equation (2.83) in the sense of Carathéodory,

according to Liberzon (2003) for all t ∈ R0+ is

x(t) = x(t− Ta) +

∫ t

t−Ta
gσ(τ)(x(τ), τ)dτ (2.89)

Evaluating this equation for arbitrary instants t ∈ {Ta, 2Ta, · · · }, yields

x(t) = x(t− Ta) +

∫ t−(1−α)Ta

t−Ta
g1(x(τ), τ)dτ +

∫ t

t−(1−α)Ta

g2(x(τ), τ)dτ (2.90)

Dividing both sides by Ta, we can rewrite the first integral

1

Ta

∫ t−(1−α)Ta

t−Ta
g1(x(τ), τ)dτ =

α

αTa

∫ αTa

0

g1

(
x(ψ + t− Ta), ψ + t− Ta

)
dψ (2.91)

where the change of variables ψ = τ − t + Ta was considered. An analogous procedure can be made for the

second integral. Then, at the limit situation where Ta → 0, we have

lim
Ta→0

x(t)− x(t− Ta)

Ta
= αg1(x(t), t) + (1− α)g2(x(t), t) (2.92)

which allows us to conclude that the time evolution of the trajectory is given by a time-average of the dynamics g1

and g2. The system given by this weighted average is called the averaged system, where α is the instantaneous

weight. This approach is a common approximation in power electronics analysis for systems commanded by

pulse-width modulated (PWM) signals of the form (2.88), see Cuk and Middlebrook (1977) for instance.

In that context, α might also be referred to as a duty cycle.

Along a sliding mode, the system trajectory is not a solution for the dynamic equation in the sense of

Carathéodory anymore since it no longer verifies (2.83). For this reason, one must seek solutions in the sense of

Fillipov (see Filippov (1967); Liberzon (2003)) that shall satisfy the differential inclusion

ẋ ∈ {gλ(x, t) : λ ∈ Λ} (2.93)

where Λ is the unit simplex given by

Λ =

{
λ ∈ RN : λi ≥ 0,

∑
i∈K

λi = 1

}
(2.94)

and gλ(x, t) =
∑
i∈K λigi(x, t). In other words, the set of possible dynamics that a continuous-time switched

system can assume does not only contain the subsystem dynamics but also includes all of their possible convex

combinations.

So far, we discussed how important is the switching law for defining the system behavior. Certainly, many

interesting situations may occur depending on the switching pattern, as it is illustrated in the following example.

Example 2.4 (Two switched systems). Consider two discrete-time switched systems (Gs,Gu) given by the
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state-space representation
x[n+ 1] = Aσ[n]x[n], x[0] = x0 (2.95)

where the switching signal is time-dependent and governed by the sequence σ = (1, 2, 1, 2, · · · ). The first
system Gs is defined by two stable subsystems

A1 =

[
0.9 0

0.9 0.9

]
, A2 =

[
0.7 0.8

0.1 0.1

]
(2.96)

while the second system Gu is given by the unstable subsystems

A1 =

[
0 0.6

0.2 0.9

]
, A2 =

[
0.8 0.3

0.8 0.2

]
(2.97)

Interestingly, for the first system Gs we have that x[n] → ∞ as n → ∞ for all x0 6= 0 and for the
second system Gu we have that x[n] → 0 as n → ∞ for any x0. This can be verified by evalu-
ating maxi∈{1,2} |γi(A2A1)| for both cases and observing that the system solution is given by x[n] =∏n
k=1Aσ[n−k]x0 for every x0 ∈ Rnx , where

∏n
k=1Aσ[n−k] is known as monodromy matrix Bittanti and

Colaneri (2009). Time trajectories evolving from x0 = [1 − 1]′ are presented for both cases in Figure 2.5.
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Figure 2.5: State trajectories for system Gs (left) and Gu (right).

We just presented how particular switching laws can stabilize trajectories governed by unstable subsystems or

destabilize trajectories derived from stable subsystems. This allows us to provide the following definition

Definition 2.8 (Stabilizability of switched systems). A switched system is said to be stabilizable with respect to
an equilibrium point xe ∈ Rnx if there exists at least one switching law σ ∈ S such that xe is a stable equilibrium
point.

Indeed, all the discussed topics in this section corroborate the fact that the stability study of switched

systems is an intricate problem. A brief discussion on stability under arbitrary switching signals is presented in

the sequel.

2.3.1 Stability under Arbitrary Switching

It is a well-known fact about switched systems (see Dayawansa and Martin (1999); Lin and Antsaklis (2009)) that

a necessary and sufficient condition for global asymptotic stability of an equilibrium point under an arbitrary
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switching law is the existence of a common Lyapunov function for all subsystems i ∈ K. That is, there

exists a radially unbounded Lyapunov function v(x) that decreases along every trajectory of each subsystem

{Gs1, · · · ,GsN}. Many efforts emerge from researchers to treat this problem in both time domains where several

classes of switching laws and various Lyapunov function structures are considered, see Branicky (1998); Geromel

and Colaneri (2006a,b); Shorten et al. (2007); Zhao et al. (2016); Philippe et al. (2018) as some instances.

Nevertheless, further discussions on this topic are beyond the scope of this thesis, where the design of state and

output-dependent switching functions is the main goal. The last two sections of this chapter summarize stability

and performance conditions for two subclasses of switched systems.

2.4 Switched Linear Systems

Conditions for designing a state-dependent switching function for switched linear systems are presented in this

section. Firstly, results for the continuous-time domain will be presented and then some discrete-time results will

follow. Both rely upon stability conditions based on Lyapunov-Metzler inequalities, which will be generalized in

Chapter 3 to cope with practical stability of switched affine systems. Important aspects of these inequalities will

be highlighted.

2.4.1 Stability and Performance - Continuous–Time Domain

A continuous-time switched linear system is defined by the state-space representation ẋ(t) = Aσ(t)x(t) +Hσ(t)w(t), x(0) = 0

z(t) = Eσ(t)x(t) +Gσ(t)w(t)
(2.98)

for which x : R0+ → Rnx denotes the state vector, w : R0+ → Rnw represents an external input signal and

z : R0+ → Rnz is a controlled (or performance) output. The switching signal σ : R0+ → K is again responsible

for choosing, at each instant of time, one subsystem Gsi = (Ai, Hi, Ei, Gi), i ∈ K, out of N available ones to

be activated. As for LTI systems, the origin is generally the only equilibrium point common to all subsystems.

Assuming w(t) = 0, the stability problem consists of determining a switching function

σ(t) = u(x(t)) (2.99)

to orchestrate the switching and, along with a Lyapunov function v(x), assure the global asymptotic stability of

the origin. A basic approach to this problem assumes a simple quadratic Lyapunov function of the form (2.20)

and the switching function

u(x(t)) = arg min
i∈K

x(t)′AiPx(t) (2.100)

where P is the solution of the Lyapunov inequality A′λP + PAλ < 0 for some λ ∈ Λ, which shows that the

existence of a λ ∈ Λ such that Aλ is Hurwitz stable is a sufficient condition for stabilizability of the system.

Hence, global asymptotic stability can be obtained even when all subsystems are unstable. Nonetheless, finding

λ ∈ Λ such that Aλ is Hurwitz is known to be an NP-hard problem, see Blondel and Tsitsiklis (1997). More
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sophisticate Lyapunov functions can be adopted to provide less conservative stability conditions. One of them

was proposed by Geromel and Colaneri (2006a) which takes into account the min-type Lyapunov function

v(x(t)) = min
i∈K

x(t)′Pix(t) (2.101)

along with the existence of a matrix Π ∈Mc, where the setMc is a subset of the Metzler matrix set, defined by

Mc =

{
Π = {πki} ∈ RN×N :

N∑
k=1

πki = 0, πki ≥ 0 ∀k 6= i

}
(2.102)

Before presenting the corresponding theorem, let us define the matrix Pπi =
∑
k∈K πkiPk.

Theorem 2.9. Consider system (2.98) with w(t) = 0, ∀t ≥ 0 and x(0) = x0. Let Qi ≥ 0 be given for all
i ∈ K. Assume that there exist a set of positive definite matrices {P1, · · · , PN} and Π ∈ Mc satisfying the
Lyapunov-Metzler inequalities

A′iPi + PiAi + Pπi +Qi < 0, ∀i ∈ K (2.103)

The state-dependent switching control (2.99) with

u(x(t)) = arg min
i∈K

x(t)′Pix(t) (2.104)

makes the equilibrium point x = 0 of (2.98) globally asymptotically stable and∫ ∞
0

x(t)′Qσ(t)x(t)dt < min
i∈K

x′0Pix0 (2.105)

Proof: See Geromel and Colaneri (2006a). �

The design conditions just presented contains those based on the quadratic Lyapunov function (2.20), see

Geromel and Colaneri (2006a). Moreover, notice that a necessary condition for the feasibility of (2.103) is that

the inequalities (
Ai +

πii
2
I
)′
Pi + Pi

(
Ai +

πii
2
I
)
< 0, i ∈ K (2.106)

be verified, which has been obtained by making Pπi =
∑N
k 6=i=1 πkiPk + πiiPi in (2.103). Since πii =

−
∑
k 6=i∈K πki < 0, it is not required any property of the matrices Ai, i ∈ K isolatedly considered. Then,

as before, the switching function is able to assure global asymptotic stability even if all subsystems Gsi, i ∈ K

are unstable. However, notice that the products between matrices Pi and the Metzler matrix Π make (2.103) a

set of nonconvex constraints. Fortunately, for a given matrix Π ∈Mc these conditions become LMIs, opening

doors for strategies to determine a solution {Π, P1, · · · , PN} based on a set of convex optimization problems.

More comments about this can be found in Geromel and Colaneri (2006a) but will also be addressed in the next

chapter.

Regarding performance indices, notice that H2 and H∞ norms are only defined for LTI systems. Never-

theless, the literature presents generalizations of these indices regarding the presence of switching in the system

dynamic. For the continuous-time domain, let us adopt indices as defined in Deaecto et al. (2012), which are:

• H2 performance index: Similarly to the time domain definition (2.37) for LTI systems, this index is



48 2.4. SWITCHED LINEAR SYSTEMS

defined for an asymptotically stable continuous-time switched system (2.98) with Gi = 0, ∀i ∈ K as

J2 =

nw∑
k=1

‖zk‖22 (2.107)

where zk(t) represents the output when the system is disturbed by an impulsive response w(t) = ekδ(t)

with k ∈ {1, · · · , nw}, where the set {e1, · · · , enw} forms the standard basis of Rnw .

• H∞ performance index: Considering a generic input w(t) ∈ L c
2 \ {0}, this index is defined for an

asymptotically stable continuous-time switched system (2.98) by the equation

J∞ = max
w∈L c

2 \{0}

‖z‖22
‖w‖22

(2.108)

Notice that these indices equal the H2 and H∞ squared norm of the i-th subsystem whenever the switching

signal is chosen σ(t) = i for all t ∈ R0+. However, as discussed in Geromel et al. (2013), whenever a switching

function u(x(t)) is consistently designed, these indices are less than or equal to the least squared norm of the

isolated subsystems.

It is a particularly difficult problem to design u(x(t)) such that the optimality of these indices is assured.

For this reason, available design conditions usually tackle the minimization of some upper bound for J2 or J∞,

which is called a guaranteed cost. The next theorems provide results in this fashion.

Theorem 2.10. For the system (2.98) with Gi = 0, for all i ∈ K, the switching function (2.104) is globally
asymptotically stabilizing and assures the guaranteed cost

J2 < min
i∈K

tr(H ′σ(0)PiHσ(0)) (2.109)

whenever Pi, ∀i ∈ K satisfy the Lyapunov-Metzler inequalities (2.103) replacing E′iEi → Qi.

Proof: It is presented in Geromel et al. (2008) and, thus, omitted. �

Theorem 2.11. For the system (2.98), the switching function (2.104) is globally asymptotically stabilizing and
assures the guaranteed cost

J∞ < ρ (2.110)

whenever Pi, ∀i ∈ K and ρ ∈ R+ satisfy the Ricatti-Metzler inequalitiesA
′
iPi + PiAi + Pπi • •

H ′iPi −ρI •
Ei Gi −I

 < 0, ∀i ∈ K (2.111)

Proof: It is presented in Deaecto and Geromel (2010) and, thus, omitted. �

In the next subsection, similar results will be obtained for discrete-time systems.
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2.4.2 Stability and Performance - Discrete–Time Domain

Let us now consider a discrete-time switched linear system, given by the state-space representation x[n+ 1] = Aσ[n]x[n] +Hσ[n]w[n], x[0] = 0

z[n] = Eσ[n]x[n] +Gσ[n]w[n]
(2.112)

Design conditions for a switching function are available in the literature considering several types of Lyapunov

functions, ranging from a simple quadratic to a time-varying one. The one presented by Geromel and Colaneri

(2006b) is again based on a min-type Lyapunov function

v(x[n]) = min
i∈K

x[n]′Pix[n] (2.113)

However, the class of Metzler matrices considered in this case is different, being defined as

Md =

{
Π = {πki} ∈ RN×N :

N∑
k=1

πki = 1, πki ≥ 0

}
(2.114)

The following theorem presents design conditions for a global asymptotic stabilizing switching function.

Theorem 2.12. Consider system (2.112) with w[n] = 0,∀n ∈ N and x[0] = x0. Let Qi ≥ 0 be given. Assume
that there exist a set of positive definite matrices {P1, · · · , PN} and Π ∈Md satisfying the Lyapunov-Metzler
inequalities

A′iPπiAi − Pi +Qi < 0, ∀i ∈ K (2.115)

The state-dependent switching control (2.99) with

u(x[n]) = arg min
i∈K

x[n]′Pix[n] (2.116)

makes the equilibrium point x = 0 of (2.112) globally asymptotically stable and assures

∞∑
n=0

x[n]′Qσ[n]x[n] < min
i∈K

x′0Pix0 (2.117)

Proof: See Geromel and Colaneri (2006b). �

As in the continuous-time case, the switching function is able to assure global asymptotic stability even if all

subsystems Gsi, i ∈ K are unstable. In fact, a necessary condition for the feasibility of (2.115) is that the

inequalities

(
√
πiiAi)

′Pi(
√
πiiAi)− Pi < 0, i ∈ K (2.118)

are verified, which has been obtained by making Pπi =
∑N
k 6=i=1 πkiPk + πiiPi in (2.115). Since the inequalities

0 ≤ √πii ≤ 1 hold, then it is not required any stability property of matrices Ai, ∀i ∈ K considered separately.

As in the continuous-time case, the conditions (2.115) are nonconvex and difficult to solve. However, whenever

matrix Π ∈Md is known, the conditions are expressed in terms of LMIs. See Geromel and Colaneri (2006b) for

a discussion about alternative conditions that are easier to solve. Now, let us define the analogous performance

indices for a discrete-time switched system as follows:
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• H2 performance index: Consider system (2.112), but evolving from x[−1] = 0. Similarly to definition

(2.59), this index is defined for an asymptotically stable discrete-time switched system (2.112) as

J2 =

nw∑
k=1

‖zk‖22 + e′kG
′
σ[−1]Gσ[−1]ek (2.119)

where zk[n] represents the output when the system is disturbed by an impulsive response w[n] = ekδ[n+ 1]

with k ∈ {1, · · · , nw}, where the set {e1, · · · , enw} forms the standard basis.

• H∞ performance index: Considering a generic non-null input w[n] ∈ L d
2 , this index is defined for an

asymptotically stable discrete-time switched system (2.112) with x[0] = 0 by the equation

J∞ = max
w∈L d

2 \{0}

‖z‖22
‖w‖22

(2.120)

Notice that, differently from the H2 norm for LTI systems, the J2 performance index for discrete-time

switched systems is calculated from the instant n = −1. This time shift does not change the fact that the

index J2 equals the squared H2 norm of the i-th subsystem when σ(t) = i, ∀t ∈ R0+ and eases the forthcoming

developments. See reference Geromel et al. (2008) for more details about this point. The next theorems present

design conditions for a globally stabilizing switching function assuring guaranteed costs for both J2 and J∞.

Theorem 2.13. For the system (2.112) with x[−1] = 0, the switching function (2.116) is globally asymptotically
stabilizing and assures the guaranteed cost

J2 < min
i∈K

tr(H ′σ[−1]PiHσ[−1] +G′σ[−1]Gσ[−1]) (2.121)

whenever Pi, i ∈ K satisfy the Lyapunov-Metzler inequalities (2.115) replacing E′iEi → Qi.

Proof: It is presented in Geromel et al. (2008) and, thus, omitted. �

Theorem 2.14. For the system (2.112) with x[0] = 0, the switching function (2.116) is globally asymptotically
stabilizing and assures the guaranteed cost

J∞ < ρ (2.122)

whenever Pi, i ∈ K and ρ satisfy the Ricatti-Metzler inequalities
Pi • • •
0 ρI • •

PπiAi PπiHi Pπi •
Ei Gi 0 I

 > 0, ∀i ∈ K (2.123)

Proof: It is presented in Deaecto et al. (2011a) and, thus, omitted. �

Necessary and sufficient conditions for stabilizability of this class of systems are presented in Fiacchini

and Jungers (2014) under a set-theory approach. Nevertheless, they are often computationally unaffordable,

as they require to check whether some particular set is contained in the union of others and are very difficult

to generalize to cope with problems of great interest in control theory, for example, state and output feedback

control design. Alternatively, sufficient design conditions based on time-varying Lyapunov functions are available
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in Deaecto and Geromel (2018) and Daiha et al. (2017), which are more adapted to generalizations. These

conditions are described in terms of LMIs and, in some cases, overcome those based on Lyapunov-Metzler

inequalities in terms of conservativeness. In fact, these LMIs are a special case of time-varying Lyapunov-Metzler

inequalities, available in Daiha et al. (2017), with Metzler matrices given by Π[n] = [λ[n] · · · λ[n]] ∈Md, λ ∈ Λ,

and can benefit of their time-varying nature to enhance performance when compared to previously presented

Lyapunov-Metzler inequalities. See reference Daiha et al. (2017) for a more detailed discussion about this topic.

Chapter 3 presents a generalization of these LMI conditions to cope with limit cycle control design in switched

affine systems. The next section presents some results already available in the literature related to switched

affine systems, since they are our main concern in this work.

2.5 Switched Affine Systems

This section is devoted to discussing results available in Bolzern and Spinelli (2004) and Deaecto et al. (2010)

about the global asymptotic stability of continuous-time switched systems whose models are affine switched

functions on the state vector. More specifically, these references present design conditions for a state-dependent

switching function capable of assuring global asymptotic stability of an equilibrium point chosen by the designer,

inside a set of attainable ones. As it will be clear afterward, these guaranties come with the existence of sliding

modes, requiring an arbitrarily high switching frequency. This is not the most desirable scenario in engineering

contexts since power loss equations are often increasing functions of the switching frequency, see Mohan et al.

(2003); Rashid (2014). That being so, our goal in this section is to emphasize the principal aspects of this class of

systems and investigate the effects of imposing bounds to the switching frequency, especially in the sampled-data

context. The next two chapters of this thesis will deeply rely upon the results to be presented in the sequence.

Consider a continuous-time switched affine system given by the state-space representation ẋ(t) = Aσ(t)x(t) + bσ(t), x(0) = x0

z(t) = Eσ(t)x(t)
(2.124)

where x : R0+ → Rnx is the state, z : R0+ → Rnz is the output and σ : R0+ → K is the switching signal,

selecting one of the subsystems Gsi = (Ai, bi, Ei), i ∈ K at each instant of time. This dynamic model is more

comprehensive than the one of switched linear systems, given in (2.98), considering w(t) = 0, ∀t ∈ R0+. The

affine vector field allows us to model several switching power converters for DC-DC conversion, such as buck,

boost, buck-boost (see Deaecto et al. (2010)), Ćuk (see Goudarzian and Khosravi (2019)), flyback (see Kolotelo

et al. (2018); Beneux et al. (2019)) and multilevel (see Patino et al. (2009)), among others. Recently, some works

also paid attention to DC-AC conversion, modeling one-phase (see Sanchez et al. (2019b)) and three-phase (see

Egidio et al. (2019)) voltage source inverters as well as AC-DC conversion (see Hadjeras et al. (2019); Egidio

et al. (nd)). For this reason, the study on switched affine systems is particularly interesting inside the power

electronics domain.

In contrast to a switched linear system, the introduction of affine terms bi, i ∈ K implies in the existence
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of a region of attainable equilibrium points, composing the subset of the state-space

Xc
e = {xe ∈ Rnx : xe = −A−1

λ bλ, λ ∈ Λ} (2.125)

Indeed, as discussed in Albea et al. (2015), notice that if we expect to obtain Fillipov solutions satisfying the

differential inclusion (2.93), then an equilibrium point xe must possess an associated λ ∈ Λ such that ẋ(t) = 0

satisfies this differential inclusion for all t ∈ R0+. Summarizing, we can state that

xe ∈ Xc
e ⇐⇒ ∃λ ∈ Λ : ẋ = Aλxe + bλ = 0 (2.126)

Hence, this is a necessary and sufficient condition to characterize an equilibrium point for this class of systems,

regardless its stability.

The first problem to be investigated in this section is whether or not there exists a state-dependent

switching function for which a given xe ∈ Xc
e is globally asymptotically stable. Notice that this is a more

challenging problem when compared with continuous-time switched linear system because, even if all subsystems

Gsi, i ∈ K are stable, the desired equilibrium point xe ∈ Xc
e might not be an equilibrium for any Gsi, i ∈ K or

there might not be a switching function that makes it asymptotically stable.

Results regarding stability analysis for these systems from a switched system point of view are available

in Bolzern and Spinelli (2004); Buisson et al. (2005); Corona et al. (2007); Deaecto et al. (2010); Hetel and

Bernuau (2014); Scharlau et al. (2014); Deaecto and Santos (2015); Sanchez et al. (2019a); Beneux et al. (2019)

where the adoption of quadratic Lyapunov functions is done in most of them. The exceptions are Scharlau

et al. (2014), which considers max-type Lyapunov functions, Corona et al. (2007), which tackles the problem

from a dynamic programming perspective and Patino et al. (2009) which adopts a neural network to control

the system reproducing optimal trajectories. Approaches considering a max-type Lyapunov function lead to

non-convex design conditions and, for the particular cases where constraints are introduced to obtain LMI-based

conditions (as done in Trofino et al. (2012)), more conservative results may be found. The dynamic programming

method benefits from dealing straightly with optimality but it might suffer from the curse of dimensionality as

the system order and the number of subsystems increases (see Bellman (1961)).

For a desired equilibrium point xe ∈ Xc
e , by declaring the auxiliary state variable ξ(t) = x(t)− xe we can

redefine system (2.124) as  ξ̇(t) = Aσ(t)ξ(t) + `σ(t), ξ(0) = ξ0 = x0 − xe
ze(t) = Eσ(t)ξ(t)

(2.127)

with `i = Aixe + bi and ze = z − Cσxe. The study of the origin ξ(t) = 0 for this alternative system is hereby

equivalent to the one of xe for the original system (2.124). Therefore, we seek a control law u(ξ(t)) such that the

switching function σ(t) = u(ξ(t)) assures the global asymptotic stability of the origin ξ = 0. The next theorem,

from Deaecto et al. (2010), presents such design method by adopting a quadratic Lyapunov function

v(ξ(t)) = ξ(t)′Pξ(t) (2.128)
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with a symmetric positive definite P ∈ Rnx×nx and defining a guaranteed cost for the L c
2 -norm of ze(t)

Theorem 2.15. Consider the continuous-time switched affine system (2.127), and let xe ∈ Xc
e with its associated

λ ∈ Λ be given. If there exists a symmetric positive definite matrix P satisfying the LMI

A′λP + PAλ +
∑
i∈K

λiE
′
iEi < 0 (2.129)

then the min-type switching function

σ(t) = u(ξ(t)) = arg min
i∈NN

ξ(t)′(Qiξ(t) + 2P`i) (2.130)

where Qi = A′iP + PAi +Ri, assures global asymptotic stability of the equilibrium point xe ∈ Xc
e along with the

guaranteed cost
‖ze‖22 ≤ ξ′0Pξ0. (2.131)

Proof: The proof is given in Deaecto et al. (2010). �

At this point, few remarks are in order. Notice that an equivalent condition to (2.129) is that Aλ be a

Hurwitz stable matrix. Nothing is imposed directly on matrices Ai, i ∈ K so this theorem takes into account

the fact that unstable subsystems may generate stable system trajectories. Another concern is the choice of

λ ∈ Λ. From the previous discussions, it follows that a λ ∈ Λ is related to a unique xe ∈ Xc
e but the converse

does not hold. Deciding if a desired xe ∈ Rnx belongs to Xc
e or not can be efficiently done by solving the convex

optimization problem

(λ∗, µ∗) = arg min
λ∈Λ, µ∈R+

µ s.t. (2.132) µ •

Aλxe + bλ I

 > 0 (2.133)

and verifying if µ∗ → 0. If so, via Schur Complement Lemma, the LMI (2.133) assures that ‖Aλ∗xe + bλ∗‖2 <

µ ≈ 0, showing that xe ∈ Xc
e . In spite of that, for a given switched affine system, the problem of deciding

whether there exists any globally asymptotically stabilizable xe ∈ Xc
e is NP-Hard. This is a consequence of the

fact that the mentioned problem is equivalent to verify if there exists a λ ∈ Λ such that Aλ is Hurwitz stable.

For more information about the NP-hardness of these problems, see Nemirovskii (1993); Blondel and Tsitsiklis

(1997); Henrion et al. (2001).

The following example, adapted from Egidio (2016), puts in evidence the control problem for this class of

systems.

Example 2.5. Consider a system (2.124) defined by matrices

A1 =

[
0 1

−5 1

]
, A2 =

[
0 1

2 −5

]
, b1 =

[
1

0

]
, b2 =

[
0

1

]
, (2.134)

and E1 = E2 = I. Note that maxi∈{1,2}Reγi(A1) = 0.5 > 0 and maxi∈{1,2}Reγi(A2) = 0.3723 > 0,
characterizing the instability of both subsystems. Our goal is to find a state-dependent switching function
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σ(t) = u(x(t)) assuring the global asymptotic stability of a chosen equilibrium point xe = [1.2051 −0.4700]′.
This point belongs to the set Xc

e , which can be verified from the solution of the optimization problem
(2.132)-(2.133). The corresponding convex combination is given by λ = [0.47 0.53] ∈ Λ. Indeed, the locus
of xe ∈ Xe is represented as a curve in Figure 2.6 along with the desired xe (black circle), xe1 (red triangle)
and xe2 (red circle) where xe1 and xe2 are, respectively, the equilibrium points of subsystems 1 and 2. In
blue, a segment of this curve is highlighted and represents the xe ∈ Xc

e such that the corresponding λ ∈ Λ

makes Aλ Hurwitz stable and thus, are stable equilibrium points.

x1

-20 -10 0 10 20

x
2
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Figure 2.6: Set Xc
e with equilibrium points xe (black circle), xe1 (red triangle) and xe2 (red circle).

Taking into account the λ associated with the chosen xe and solving the optimization problem

min
P>0,µ>0

µ s.t. P < µI, (2.129) (2.135)

we can find a matrix

P =

[
1.3702 0.3876

0.3876 0.4072

]
(2.136)

satisfying the conditions of Theorem 2.15. This objective function was chosen to obtain P without taking
into account any specific initial condition. Notice that eigenvalues of P are bounded above by µ, which
provides the robust upper-bound for the guaranteed cost

‖ze‖22 < ξ′0Pξ0 < µ‖ξ0‖2 (2.137)

With the obtained P , we can design the state-dependent switching function (2.130). The resulting switching
surface C can be defined as

C = {ξ ∈ Rnx : (ξ − ξc)′∆Q(ξ − ξc) = r} (2.138)

with, ∆Q = Q1 − Q2, r = ∆`′P (∆Q)−1P∆`, ∆` = `1 − `2 and ξc = −(∆Q)−1P∆`. This expression
comes from the equality ξ′(Q1ξ + 2P`1) = ξ′(Q2ξ + 2P`2), which defines the set of x ∈ Rnx such that
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the min operator in (2.130) accepts two arguments. The eigenvalues of ∆Q are γ1(∆Q) = −5.4530 and
γ2(∆Q) = 4.9125, implying that C is a hyperbole. The phase portrait of this system is represented in Figure
2.7. The gray dashed line represents the switching surface C and the blue, green and black curves describe
system trajectories evolving with respect to subsystem 1, subsystem 2 and sliding modes, respectively.

Figure 2.7: Phase portrait of the switched affine system.

Finally, we present in Figure 2.8 the time evolution of a particular system trajectory evolving from
ξ0 = [−2.3223 −7.6555]′ along with the correspondent switching signal. The zoomed plot highlights the high
switching frequency required in order to maintain the simulated system trajectory at the desired equilibrium
point. Additionally, the L c

2 -norm of ζ(t) was calculated, providing ‖ze‖22 = 24.4743 < ξ′0Pξ0 = 45.0331, as
expected.

t t

Figure 2.8: Time evolution for a system trajectory along with corresponding switching signal.
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As previously discussed, in the switched affine systems context, the price to pay for asymptotic stability of a

point, which is not an equilibrium for any subsystem is the arbitrarily high switching frequency characterizing

sliding modes, as it was made clear in the previous example. Anyhow, in practical applications the switching

frequency must be limited by some intrinsic system property such as sampling periods, response times, slew

rates or other issues that prevent sliding surfaces to occur as the theory predicts. The result is a finite frequency

oscillation around the theoretical system trajectory jeopardizing the control design, causing component wear or

even damages. This unforeseen high frequency oscillation is known as the chattering phenomenon, see Khalil

(2002); Utkin and Lee (2006) and many are the efforts emerging from the scientific community to suppress it.

To tackle the chattering avoidance problem one must bound the switching frequency by some suitable

finite value, which might be done by employing dwell-time (see Deaecto et al. (2014)), hysteresis (see Hespanha

et al. (2003)), among others (see Lee and Utkin (2007)). Another feasible approach is to employ a piecewise

constant switching function, describing the switching signal as

σ(t) = u(x(tn)), ∀t ∈ [tn, tn+1) (2.139)

where t0 = 0 and tn+1 > tn for all n ∈ N. This naturally arises when the sampled-data control framework is

taken into account in the sense that the state variable is only available to be measured at specific sampling

instants. Empirically, the effects produced by such restriction are investigated in the next example.

Example 2.6. Consider the switched affine system defined in Example 2.5 and that the switching function
is now replaced by (2.139) with u(x(t)) defined in (2.130) with matrix P determined in the previous example
and considering a constant length for the piecewise constant intervals, i.e. T = tn+1 − tn for all n ∈ N.

0 5 10 15
t

10 -4

10 -2

100

102

104

v
(ξ

(t
))

T =10−3[s]
T =0.1 [s]
T =0.3 [s]
T =0.7 [s]
T =1 [s]
T =2 [s]
T =3 [s]

Figure 2.9: Time evolution of the Lyapunov function v(ξ) for different T .

Adopting various values of T ∈ {10−3, 0.1, 0.3, 0.7, 1, 2, 3}[s] allowed us to analyze different
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behaviors for the system trajectory ξ(t) evolving from ξ0 = [−4 −6]′. Figure 2.9 presents the time evolution
of the Lyapunov function v(ξ) for several values of T . Notice that for T = 1 [s] and T = 3 [s] the Lyapunov
function grows indefinitely, characterizing instability. However, for the remaining values of T , v(ξ) is
bounded in steady state, characterizing the practical stability of xe given in Definition 2.4. Certainly,
the system trajectories were attracted to some region in the state-space containing xe and, once inside,
they never left it. It is important to remark that for T = 2 [s] the Lyapunov function remains bounded
even though for T = 1 [s] the correspondent response was unstable, which is a seemingly counterintuitive
consequence as all switching signals produced for T = 2 [s] could be generated when T = 1 [s]. This
occurs because the existence of a dwell-time has not been taken into account in the control design of the
state-dependent switching function.

Indeed, the investigation provided by this last example is the main motivation for the study of discrete-

time switched affine systems, as the discrete-time dynamics naturally bounds the switching frequency and

only practical stability can be achieved. Moreover, notice that for switching signals of the form (2.139), the

continuous-time system can be described at the sampling instants by a discrete-time switched affine system

employing the norm-equivalent discretization procedure introduced in Subsection 2.2.3, discretizing each of the

subsystems separately.

2.5.1 Sampled-Data Switched Affine Systems

To conclude this chapter, the present subsection discusses some results available in the literature dealing or

adapted to deal with sampled-data control of switched affine systems. These control systems, as previously

discussed, will combine the continuous-time dynamics with discrete sampling events, which will produce piecewise

constant switching signals, bounding the switching frequency.

In the context of hybrid systems, the reference Rubensson and Lennartson (2000) presented an analysis

to assess stability of limit cycles for a given discrete-time switched affine systems. In this case, the switching

surfaces are assumed to be given and no control problem arises.

The first reference dealing with the control design, to the best of my knowledge, is Lee and Kouvaritakis

(2009), which employs receding horizon control to keep the system trajectories inside an invariant set, close to

a reference value. This requires the off-line solution of 2h semidefinite programming problems where h is the

defined discrete-time horizon length.

In Xu et al. (2010), some results about practical stability of discrete-time switched affine systems are

presented, which cope with sampled-data systems under constant sampling period. This approach analyzes the

quadratic forms generated by the difference operator of a quadratic Lyapunov function, providing the attraction

set constructively. However, a procedure to define the Lyapunov matrix P is not provided and the authors

suggest employing a common quadratic Lyapunov function, which requires the stability of all subsystems.

Hauroigne et al. (2011) presents three strategies to stabilize the system, being the first one time-dependent

(based on PWM signals), the second one selects the subsystem providing the steepest descent for a quadratic

Lyapunov function, and the third one minimizes this Lyapunov function over some receding horizon. The global

stability guarantee comes from the solution of an optimization problem selecting the worst level set attained after

some finite number of switching events N . The complexity of this problem grows exponentially with the number
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of subsystems and the number of switching events N considered in the analysis. Additionally, the authors in

Hetel and Fridman (2013) have proposed a switching function taking into account an uncertain sampling period

and also uncertainties in the model along with design conditions written as LMIs. This result establishes a

trade-off between the size of the set to where the system trajectories are attracted and the decay rate of this

attraction.

A strategy for bounding the switching frequency was proposed in Bolzern and Spinelli (2004) but it

should not be regarded from the sampled-data viewpoint as this upper-bound is not user-defined nor fixed. The

same can be concluded about the practical stabilization discussions presented in Xu et al. (2008), Sanchez et al.

(2019b) and many others based on hysteresis or non-constant dwell-times. In fact, for digital implementation,

non-constant switching frequencies demand a high sampling frequency to detect the exact (or almost exact)

instant when a switching event must occur.

For this reason, the next chapter is entirely dedicated to investigating discrete-time switched affine systems

governed by both state and output-dependent switching functions. The discrete-time domain approach naturally

synchronizes the switching and sampling events and microprocessors can handle the control strategy with no

difficulty. Moreover, novel stability conditions are presented, less conservative than preexisting ones in many

aspects.

2.6 Concluding Remarks

In this chapter, basic concepts regarding dynamic systems (and particularly switched systems) were presented,

allowing the reader to better understand the main results obtained through my Ph.D. studies, presented in

the sequel. The key concept illustrated in the last section is to regard the switching signal as the only control

variable in the system, which will be extensively explored in Chapters 3 and 4.

For further readings on systems and signals theory, refer to Luenberger (1979); Slotine et al. (1991);

Oppenheim et al. (1997); Khalil (2002); Oppenheim and Schafer (2014). Books containing classical results on

switched systems are Liberzon (2003); Sun and Ge (2011). More discussions on sampled-data control can be

found in Chen and Francis (2012).
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Chapter 3

Discrete-Time Switched Affine Systems

“Eu já estou com o pé nessa estrada / Qualquer dia a gente se vê / Sei que nada será como
antes, amanhã”

— Milton Nascimento & Ronaldo Bastos, Nada será como antes (1970)

Part of the main results obtained throughout these doctoral studies is presented in this chapter. As it

was made clear in Section 2.6, not many works concerning stabilizability of discrete-time switched affine

systems are available in the literature. With this in mind, conditions for guaranteeing global stability of specific

points in the state-space will be developed from a Lyapunov stability perspective. This is a subject of great

interest as it might shed light upon the dynamic behavior of this class of systems in a more comprehensive fashion,

allowing generalizations from the literature to be incorporated. Moreover, these concepts can be straightforwardly

applied in the control of DC-DC converters, allowing to limit the switching frequency by a desired sampling rate,

as already discussed in the last chapter.

Firstly, some practical stability results will be presented, where the goal is to determine a set to where the

state trajectories are globally attracted. This set, containing the desired equilibrium point, is calculated along

with the switching function design, allowing the optimization of some of its metrics. State and output-dependent

switching functions will be developed at this part and novel design conditions, based on Lyapunov-Metzler

inequalities, are discussed.

Later, a time-varying Lyapunov function approach is considered, addressing global asymptotic stability

of limit cycles rather than general practical stability of a specific point. Under this perspective, H2 and H∞
performances can be taken into account, in contrast with the first methodology.

3.1 Problem Formulation

Consider a switched affine system in the discrete-time domain whose model is given by the state-space

representation 
x[n+ 1] = Aσ[n]x[n] + bσ[n] +Hσ[n]w[n], x[0] = x0

y[n] = Cσ[n](x[n]− xe)

z[n] = Eσ[n](x[n]− xe) +Gσ[n]w[n]

(3.1)

where x : N → Rnx denotes the state vector, w : N → Rnw represents an exogenous input sequence and

y : N→ Rny and z : N→ Rnz are, respectively, the measured and the controlled outputs. The switching sequence

σ : N→ K is responsible for choosing, at each instant of time, one subsystem Gsi = (Ai, bi, Hi, Ci, Ei, Gi), i ∈ K,

out of N available ones to be activated.

A goal point xe ∈ Rnx is also considered and, as previously discussed in Chapter 2, it will be called an

equilibrium point even though it is not a solution to the dynamic equation. Indeed, the only actual equilibrium

points for this system are those of the isolated subsystems and asymptotic stability towards any other point is

impossible to be guaranteed. For this reason, this control problem consists of designing a switching function that,
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by commanding the switching sequence σ[n], can guide the state trajectories starting from any initial condition

to as close as possible to xe. Although the vague concept of “as close as possible” might be subjective, we will

analyze different performance metrics throughout this chapter.

Compared to what was discussed in Section 2.5 and references therein, this switched control problem in

discrete-time domain is more intricate than in continuous-time, requiring not only the stability certificate but

also an evaluation for the steady-state behavior of the state trajectories. The following questions arise: Is it

possible to stabilize x[n] to a limit cycle, an invariant set or other structure around xe? How to derive an upper

bound for ‖x[n] − xe‖, n ≥ n0 for some n0 ∈ N? And what happens to the control problem if xe is partially

known or x[n] is partially available to be measured? These concerns will be addressed in the following sections.

3.2 Practical Stability

In this section, conditions for designing state and output-dependent switching functions to assure practical

stability of the desired xe are presented. The generic concept of global practical stability of equilibrium points,

given in Definition 2.4, is recalled at this moment. To assure this feature for a given system (3.1), let us first

define the auxiliary state variable ξ[n] = x[n]− xe and rewrite the state-space representation of (3.1) as
ξ[n+ 1] = Aσ[n]ξ[n] + `σ[n] +Hσ[n]w[n], ξ[0] = ξ0

y[n] = Cσ[n]ξ[n]

z[n] = Eσ[n]ξ[n] +Gσ[n]w[n]

(3.2)

where `i = (Ai − I)xe + bi is the new associated affine vector and ξ0 = x0 − xe. For this system, the origin ξ = 0

is equivalent to x = xe for the original system (3.1). This alternative system considerably eases the forthcoming

developments.

Consider now the existence of a Lyapunov function v(ξ) and a switching function σ[n] = u(·) which assure

that the time-difference operator of v(ξ) is negative for points ξ far enough from ξ = 0, but this statement fails

inside some bounded set containing ξ = 0. It is not hard to imagine that this scenario is sufficient to assure that

system trajectories will be attracted toward the origin but may never attain it. This idea is formalized using the

following definitions, presented in Deaecto and Geromel (2017); Egidio et al. (2017).

Definition 3.1 (Set of attraction). A bounded set X ⊂ Rn is a set of attraction of system (3.2) guided by a
switching function σ[n] = u(·) if there exists a Lyapunov function v(ξ) such that the following conditions are
simultaneously satisfied:

1. 0 ∈ X

2. If ξ[n] /∈ X then ∆v(ξ[n]) < 0

Definition 3.2 (Invariant set of attraction). A bounded set V ⊂ Rn is an invariant set of attraction of
system (3.2) guided by a switching function σ[n] = u(·) if it is a set of attraction and fulfills the invariance
property, i.e., ξ[n] ∈ V =⇒ ξ[n+ 1] ∈ V.

These sets are of main importance for the results presented within this section. It is important to remark

that the idea of set of attraction is close to the concept of attractor (see Milnor (1985)). However, the sets of
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attraction presented in Definitions 3.1 and 3.2 are not themselves attractors. This can be concluded observing

that the definition of attractor provided by Milnor (1985) requires that it cannot present another attractor inside

of it. The sets of attraction fail in fulfilling this requirement as they might contain one or more attractors in

their interiors.

The switching functions we will design in this section present an associated set of attraction which, together

with its Lyapunov function, is the practical stability certificate for the switched affine system. To relate the

existence of a set of attraction to the generic Definition 2.4, some discussions are in order. Before going any

further, let us present the following lemma.

Lemma 3.1. If there exists an invariant set of attraction V for a switched affine system (3.2) under a switching
function σ[n] = u(·), then its origin ξ = 0 is a globally practically stable equilibrium point.

Proof: Given the fact that 0 ∈ V, we can conclude that any system trajectory starting outside of V is globally

attracted to it (because of condition 2 in Definition 3.1). Then, let us define n0 ∈ N as the first time instant n = n0

such that ξ[n] ∈ V. Given that V is bounded and has the invariance property, we can define R = supξ∈V ‖ξ‖,

which satisfies Definition 2.4 as an upper bound for ‖x[n]− xe‖ < R for n > n0. �

The next lemma, inspired by discussions in Deaecto and Geromel (2017), points out that the existence

of a set of attraction is actually sufficient for practical stability, regardless of its invariance property. Before

introducing its statement, considering boundedness of X and continuity of v(ξ), let us define VM , V∆ ∈ R+ such

that VM = maxξ[n]∈X v(ξ[n]) and V∆ = maxξ[n]∈X ∆v(ξ[n]).

Lemma 3.2. If there exists a set of attraction X for a switched affine system (3.2) under a switching function
σ[n] = u(·), then its origin ξ = 0 is a globally practically stable equilibrium point.

Proof: Let us demonstrate that whenever X exists, there is a corresponding invariant set of attraction V,

which assures global practical stability through Lemma 3.1. This invariant set is constructed as a sublevel set

V = {ξ ∈ Rnx : v(ξ) ≤ VM + V∆}. Firstly, note that X is a subset of V since X ⊆ {ξ ∈ Rnx : v(ξ) ≤ VM} ⊆ V .

The verification that any V is also a set of attraction is straightforward from the fact that X ⊆ V . To demonstrate

the invariance property, two cases must be analyzed for ξ[n] ∈ V:

1. ξ[n] /∈ X : For this case, we have ∆v(ξ[n]) < 0 and so ξ[n+ 1] remains in V.

2. ξ[n] ∈ X : Now, the fact that ∆v(ξ[n]) ≤ V∆ for ξ[n] ∈ X yields

v(ξ[n+ 1]) ≤ v(ξ[n]) + V∆ (3.3)

≤ VM + V∆ (3.4)

concluding that ξ[n+ 1] also remains in V.

This proves the invariance of V, concluding this demonstration. �

This result will not be directly employed to evaluate invariant sets because, in our particular studies, we will

take advantage from the fact that these sets are constructed through ellipsoids. At this moment, the reader
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is invited to Appendix C for a brief review on ellipsoids. Nevertheless, the importance of the previous lemma

resides in showing that presenting a generic set of attraction X is sufficient to assess the global practical stability

of the desired equilibrium point xe. With this in mind, let us now turn our attention to the design of globally

practically stabilizing state-dependent switching functions.

3.2.1 State-dependent Switching

The following developments assume that the desired equilibrium point xe is taken within a set of attainable ones

in the state-space. As will be clear later, this constraint allows us to draw key conclusions about sampled-data

switched affine systems. The considered set of equilibrium points for this class of systems is defined

Xe = {xe ∈ Rnx : xe = (I −Aλ)−1bλ, λ ∈ Λ} (3.5)

Analogously to its continuous-time counterpart, each xe ∈ Xe has at least one associated vector λ ∈ Λ

such that `λ = 0. Additionally, verifying whether a given xe belongs to Xe can be done in a similar way to

(2.132)-(2.133). However, an easier manner to proceed is to find the set Xe by varying λ ∈ Λ and choose a point

of interest inside it. This procedure is commonly adopted in literature (see Deaecto et al. (2010), Sanchez et al.

(2019a), Hetel and Fridman (2013)).

As done in Deaecto and Geromel (2017); Egidio and Deaecto (nd), the Lyapunov function to be considered

is a general quadratic one

v(ξ) =

ξ
1

′  P h

h′ h′P−1h

ξ
1

 (3.6)

with h ∈ Rnx and 0 < P ∈ Rnx×nx , written alternatively as v(ξ) = (ξ − ξc)′P (ξ − ξc) with center ξc = −P−1h.

Clearly, this is a convex function such that v(ξ) > 0 for all ξ 6= ξc and v(ξc) = 0. In Egidio (2016); Deaecto and

Egidio (2016) the Lyapunov function was considered centered at the origin, that is, ξc = 0, while in Deaecto

and Geromel (2017) the center ξc is determined from the equilibrium solution to a minimax problem. The next

theorem, from Egidio and Deaecto (nd), presents the conditions for the state feedback case encompassing results

from both references.

Theorem 3.1. Consider system (3.1) with x[n] available for feedback, w[n] = 0,∀n ∈ N and let the equilibrium
point xe ∈ Xe be given with its associated vector λ ∈ Λ. If there exist symmetric matrices W , P , Qi, vectors
h, g, ci ∈ Rnx and scalars ρi solution to the convex optimization problem

inf
W,P,Qi,h,g,ci,ρi

− ln(det(W )) s.t. (3.7)

 P −Qi • •
c′i + h′(I −Ai) ρi − `′ih− h′`i •

PAi P`i P

 > 0, i ∈ K (3.8)

Qλ • •
−c′λ 1− ρλ •
W g W

 > 0 (3.9)
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then the state-dependent switching function σ[n] = u(ξ[n]) with

u(ξ[n]) = arg min
i∈K
−ξ[n]′Qiξ[n] + 2c′iξ[n] + ρi (3.10)

assures that the equilibrium point ξ = 0 is globally practically stable and that

X∗ = {ξ ∈ Rnx : (ξ − µ)′W (ξ − µ) ≤ 1} (3.11)

with µ = −W−1g, is an ellipsoidal set of attraction of minimum volume.

Proof: Assume that inequalities (3.8)-(3.9) are verified. Time dependency is dropped from this point onward.

Evaluating the time-difference operator of the Lyapunov function for an arbitrary trajectory of (3.2), we have

∆v(ξ) = v(Aσξ + `σ)− v(ξ)

=

ξ
1

′  A′σPAσ − P •

`′σPAσ + h′(Aσ − I) `′σP`σ + 2`′σh

ξ
1

 (3.12)

≤

ξ
1

′ −Qσ •

c′σ ρσ

ξ
1

 (3.13)

where this inequality is verified from (3.8) after applying the Schur Complement Lemma with respect to the

matrix block (3,3). Now, taking into account the switching function (3.10), we obtain

∆v(ξ) ≤ min
i∈K

ξ
1

′ −Qi •

c′i ρi

ξ
1


= min
λ∗∈Λ

ξ
1

′ −Qλ∗ •

c′λ∗ ρλ∗

ξ
1


≤

ξ
1

′ −Qλ •

c′λ ρλ

ξ
1

 (3.14)

which holds for all ξ ∈ Rnx . Defining the set Xs as being

Xs = {ξ ∈ Rnx : (ξ − µs)′Qλ(ξ − µs) < c′λQ
−1
λ cλ + ρλ} (3.15)

with µs = Q−1
λ cλ, and considering the validity of (3.14), two properties hold. The first one is ξ = 0 ∈ Xs

because, from (3.8), we have that ρi > 2`′ih, which implies that ρλ > 0 since `λ = 0. The second one is that

∆v(ξ) < 0, ∀ξ /∈ Xs, indicating that Xs is a set of attraction for the system according to Definition 3.1. Moreover,

notice that, by S-procedure (see Appendix Subsection A.4), the set X , defined in (3.11), contains the ellipsoid

Xs whenever the inequality  W •

−µ′W µ′Wµ− 1

 < β

Qλ •

−c′λ −ρλ

 (3.16)

is satisfied for β > 0, see Boyd et al. (1994) for details. Actually, both sides of (3.16) can be arbitrarily close and

the sign in (3.16) could be replaced by ≤. However, we will maintain it strict, without loss of generality, in order
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to describe the problem in terms of strict LMIs. In other words, multiplying both sides of (3.16) to the left by

[ξ′ 1] and to the right by its transpose, the resulting inequality assures that (ξ − µ)′W (ξ − µ) < 1 whenever

ξ ∈ Xs and, as a consequence, X is a set of attraction, since X ⊇ Xs. Writing (3.16) as βQλ •

−βc′λ 1− βρλ

 >
 W

−µ′W

W−1

 W

−µ′W

′ (3.17)

By applying the Schur Complement Lemma with respect to W in (3.17) we obtain
βQλ • •

−βc′λ 1− βρλ •

W g W

 > 0 (3.18)

Now, notice that (3.8) can be multiplied by the scalar β, without loss of generality. The resultant inequality

and (3.18) after redefining, with some abuse of notation, (Qi, ci, ρi, P, h)← (βQi, βci, βρi, βP, βh), are exactly

the inequalities (3.8)-(3.9), assuring that X is an ellipsoidal set of attraction. The objective function (3.7) is

responsible for minimizing the volume of (3.11) (see Appendix Subsection C.1 for more information about

ellipsoids and volume minimization). The proof is concluded. �

This is the first stability theorem for discrete-time affine switched systems discussed in this dissertation,

assuring the existence of an ellipsoidal set of attraction X . Let us draw a comparison between this result and the

one presented in Deaecto and Geromel (2017). This reference provides a design procedure based on the solution

to the convex optimization problem

inf
P>0,W>0

− ln(det(W )) s.t. (3.19)∑
i∈K

λiA
′
iPAi − P < −W,

∑
i∈K

`′iP`i < 1 (3.20)

which minimizes the volume of X = {ξ ∈ Rnx : ξ′Wξ ≤ 1}. These conditions were obtained departing from an

upper bound for the difference operator of the Lyapunov function that is derived adopting the switching function

σ[n] = u(ξ[n]) with u(ξ) = arg mini∈K v(Aiξ + `i). This upper bound function is given by

∆v(ξ) < fu(ξ, h) =
∑
i∈K

λi


ξ

h

1


′ 
A′iPAi − P • •

Ai − I 0 •

`′iPAi `′i `′iP`i



ξ

h

1

 (3.21)

Assuming that the design conditions are fulfilled, the function fu(ξ, h) is concave with respect to ξ and linear (or

concave-convex) with respect to h. Thus, there exists a saddle point that is the solution to the minimax problem

min
h∈Rnx

max
ξ∈Rnx

fu(ξ, h) (3.22)

To define the center of v(ξ) that minimizes the worst-case upper bound for ∆v(ξ), the vector h is chosen from

the equilibrium solution to (3.22) given as (h∗, ξ∗) =
(
(I −A′λ)−1(

∑
i∈K λiA

′
iP`i), 0

)
, which can be obtained as

demonstrated in Deaecto and Geromel (2017). For a broader study about saddle points in convex optimization,

see Rockafellar (1970). Back to our context, notice that (3.8), after having applied the Schur Complement
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Lemma with respect to the last diagonal block, can be rewritten as A′iPAi − P •

`′iPAi − h′(I −Ai) `′iP`i + 2`′ih

 <
−Qi •

c′i ρi

 (3.23)

We can observe that, without loss of generality, the right-hand side of this inequality can take values arbitrarily

close to the left-hand side and, therefore, (3.10) becomes the switching function of Deaecto and Geromel (2017).

Moreover, inequality (3.23) together with (3.9), after performing the Schur Complement with respect to the last

row and column, provide
∑
i∈K

λiA
′
iPAi − P •∑

i∈K
λi`
′
iPAi − h′(I −Aλ)

∑
i∈K

λi`
′
iP`i

 <
−W •

µ′W 1− µ′Wµ

 (3.24)

where it has been used the fact that `λ = 0 since xe ∈ Xe. Notice that h = (I −A′λ)−1(
∑
i∈K λiA

′
iP`i −Wµ) is

the best choice, since this vector makes null the off-diagonal block element, implying that (3.24) is equivalent

to
∑
i∈K λiA

′
iPAi − P < −W and

∑
i∈K λi`

′
iP`i < 1− µ′Wµ. This last inequality allows us to conclude that

µ = 0 is the less restrictive choice and, therefore, vector h becomes the optimal solution to the minimax problem

(3.22). Moreover, the resultant inequalities become exactly (3.20), putting in evidence that Theorem 3.1 is

equivalent to Theorem 1 of Deaecto and Geromel (2017). Although they are equivalent, the great advantage

of adopting Theorem 3.1 is that it is more amenable for output feedback generalizations, since it allows us to

impose structures on the matrices that define the switching function, making it independent of the state vector.

This point will be clear afterward.

Another property of Theorem 3.1 is worthwhile to mention. Notice that the necessary and sufficient

condition for the feasibility of this theorem is
∑
i∈K λiA

′
iPAi − P < 0 and, therefore, nothing is required from

matrices Ai, ∀i ∈ K, considered separately. This can be concluded from the discussions in the previous paragraph.

Hence, even in cases where all subsystems are unstable, it is possible to obtain practical stability through

a suitable action of the switching function (3.10), as discussed in Chapter 2. However, in contrast with the

continuous-time case, the Schur stability of Aλ is necessary but not sufficient for feasibility. Indeed, as proved in

Deaecto et al. (2014),
∑
i∈K λiA

′
iPAi − P < 0 is satisfied for some P > 0 whenever Aλ is Schur stable, with

Ai = A′i ⊗Ai, where ⊗ stands for the Kronecker product.

Finally, it is important to verify whether the center of the Lyapunov function ξc = −P−1h and the

equilibrium point ξ = 0 belong to the set of attraction X . To demonstrate that ξc ∈ X , notice that (3.14)

evaluated for ξc provides ξc
1

′ −Qλ •

c′λ ρλ

ξc
1

 > v(Aσξc + `σ)

≥ 0 (3.25)

because v(ξc) = 0. This inequality, together with (3.9), after applying the Schur Complement with respect to
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the last row and column, producesξc
1

′  W •

−µ′W µ′Wµ− 1

ξc
1

 <
ξc

1

′ Qλ •

−c′λ −ρλ

ξc
1

 < 0 (3.26)

which guarantees that ξc ∈ X . Now, we have that 0 ∈ X from the simple fact that 0 ∈ Xs as proved in Theorem

3.1 and Xs ⊆ X . Concluding these remarks, let us illustrate the effectiveness of these practical stability conditions

by means of an academical example.

Example 3.1. Consider a discrete-time switched affine system (3.1) given by matrices

A1 =

[
−0.1 0.8

0.4 −0.8

]
, A2 =

[
−0.9 0.8

0.6 0.5

]
, A3 =

[
0.3 0.5

1.0 0.7

]
, A4 =

[
−0.5 1.0

0.8 0.3

]
(3.27)

b1 =

[
−0.1

0

]
, b2 =

[
0.2

0.1

]
, b3 =

[
0

−0.1

]
, b4 =

[
−0.1

0

]
(3.28)

defining N = 4 unstable subsystems. Our goal is to bring the state trajectories, starting from arbitrary
initial conditions x0 ∈ R2, to as close as possible to zero. As the desired equilibrium point is already the
origin, no auxiliary state variable ξ is needed in this case.

There is no difficulty in verifying that 0 ∈ Xe associated with the convex combination vector
λ = [0.05 0.25 0.25 0.45] ∈ Λ. Solving the convex optimization problem proposed in Theorem 3.1, we
have obtained matrices

P =

[
56.1502 −8.7082

−8.7082 48.9259

]
, h =

[
−7.9537

−12.2851

]
, W =

[
1.8397 −0.2487

−0.2487 1.8291

]
, g = 0 (3.29)

and Qi, ci, ρi, i ∈ K, which assure the existence of an elliptical set of attraction X centered at the origin and
with a minimum area equals to 1.7286, as given in (3.11). This allowed us to implement the state-dependent
switching function (3.10), which can orchestrate the switching to assure global practical stability of x = 0.
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Figure 3.1: Phase portrait of state trajectory evolving from x0 = [0 5]′, being attracted to X .
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Figure 3.2: Time evolution of state trajectory from x0 = [0 5]′, and resulting switching sequence.

For an initial condition x0 = [0 5]′, we could obtain the simulated system response, displayed in
the phase portrait in Figure 3.1 and as a function of time in Figure 3.2 along with the resultant switching
sequence. Notice in Figure 3.1, the operating regions of each switching function σ[n] = u(ξ[n]) ∈ {1 · · · , 4}
as well as the set of attraction X .

This last example highlights the state-dependent switching function design for a switched affine system.

Despite the fact that this system comprises only unstable dynamics, the proposed methodology was successful

in assessing global practical stability. The next example provides a comparison between Theorem 3.1 and the

results presented in Xu et al. (2010).

Example 3.2. Consider the discrete-time switched affine system (3.1) defined by matrices

Ai = eAciT , bi =

∫ T

0

eAciτdτ bci (3.30)

discretized by the step invariant discretization (2.77) with

Ac1 =

[
1 10

−100 1

]
, Ac2 =

[
−1 1

−1 −1

]
, Ac3 =

[
−0.1 2

−2 −0.2

]
(3.31)

bc1 =

[
−0.7

−0.7

]
, bc2 =

[
0.8

−0.5

]
, bc3 =

[
−0.5

0.8

]
(3.32)

provided in Example 1 of Xu et al. (2010). Authors in Xu et al. (2010) proposed a strategy to assess
practical stability of the origin for a discrete-time switched affine system. When this strategy is applied to
this discretized system, the maximal value of T for which Xu et al. (2010) can assure stability is T = 0.01239

s. However, Theorem 3.1 can guarantee practical stability of this same point for sampling periods up to
T = 0.0227 s, which is 83% greater than Xu et al. (2010). For this value, the associated λ ∈ Λ, assuring
0 ∈ Xe is λ = [0.3306 0.4437 0.2256]. The solution matrices defining the ellipsoid X , the corresponding
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Lyapunov function and the switching function (3.10) are

W =

[
0.0597 −0.0012

−0.0012 0.0072

]
, P =

[
3.7437× 103 80.0148

80.0148 449.4066

]
, h =

[
44.8749

0.1895

]
(3.33)

Q1 =

[
−250.5197 191.6029

191.6029 −13.1692

]
, Q2 =

[
171.0821 −67.7403

−67.7403 14.8413

]
, Q3 =

[
30.8845 −147.5359

−147.5359 −9.8596

]
(3.34)

c1 =

[
−57.8769

−3.6003

]
, c2 =

[
63.3281

−1.1718

]
, c3 =

[
−39.7399

7.5801

]
, ρ1 = −0.4658, ρ2 = 2.8075, ρ3 = −0.4071 (3.35)

Let us now turn our attention to the invariance property of the set of attraction. Although the existence

of a simple set of attraction X is sufficient to assess practical stability, as discussed in Lemma 3.1, a different

methodology based on a convex optimization problem to obtain an invariant set of attraction is presented in the

next theorem, borrowed from Deaecto and Geromel (2017).

Theorem 3.2. Consider system (3.1) with x[n] available for feedback, w[n] = 0, ∀n ∈ N and let the set of
attraction X , obtained from Theorem 3.1 be given, along with solution matrices P , W and h. If there exist
scalars r, β > 0, solution to the convex optimization problem

inf
r,β>0

r s.t. (3.36)

r − β • •
h P •
0 P βW

 > 0 (3.37)

then the ellipsoidal set
V = {ξ ∈ Rnx : v(ξ) < r} (3.38)

is an invariant set of attraction with X ⊂ V.

Proof: Available in Deaecto and Geromel (2017). �

This last theorem provides a convex optimization problem whose solution defines an invariant sublevel set

for the Lyapunov function. Notice this is done for the specific case where g = 0, i.e., X is centralized at the

equilibrium point. However, Theorem 3.2 may be employed in the general case after defining another translated

state variable ξT = ξ − µ which makes h← h− Pµ in (3.37). A possibly smaller sublevel set could be obtained

if, instead of minimizing the volume of X and then calculating V, the designer adopted the following theorem

which deals directly with the invariant set minimization.

Theorem 3.3. Consider system (3.1) with x[n] available for feedback, w[n] = 0,∀n ∈ N and let the equilibrium
point xe ∈ Xe be given with its associated vector λ ∈ Λ. If there exist symmetric matrices P , Qi, vectors
h, ci ∈ Rnx and scalars ρi, β solution to the optimization problem

inf
P,Qi,h,ci,ρi,β

− ln(det(P )) s.t. (3.39)
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 P −Qi • •
c′i + h′(I −Ai) ρi − `′ih− h′`i •

PAi P`i P

 > 0, i ∈ K (3.40)

 βQλ • •
−βc′λ 1− βρλ •
P h P

 > 0, β > 0 (3.41)

then the state-dependent switching function (3.10) assures that ξ = 0 is a globally practically stable equilibrium
point and that

V = {ξ ∈ Rnx : v(ξ) ≤ 1} (3.42)

is an ellipsoidal invariant set of attraction of minimum volume.

Proof: The proof that V is a set of attraction of minimum volume is straightforward from Theorem 1, observing

that X = V ⊇ Xs is assured as (3.9) is equivalent to (3.41) with W = P and g = h. Notice that the S-procedure

multiplier β could not be incorporated into the problem variables in this case. The invariance property is verified

by analyzing the following cases when ξ[n] ∈ V:

1. ξ[n] /∈ Xs: For this case, we have ∆v(ξ[n]) < 0 and so ξ[n+ 1] remains in V.

2. ξ[n] ∈ Xs: Now, from (3.14), we have

v(ξ[n+ 1]) <

ξ
1

′ P −Qλ •

h′ + c′λ h′P−1h+ ρλ

ξ
1

 (3.43)

≤ max
ξ∈Xs

ξ
1

′ P −Qλ •

h′ + c′λ h′P−1h+ ρλ

ξ
1

 (3.44)

= max
ξ∈Xs

ξ
1

′ P •

h′ h′P−1h

ξ
1

 (3.45)

= 1 (3.46)

where the first equality comes from Lemma A.5 along with the fact that P −Qi > 0 for all i ∈ K from

(3.40) and the last equality is a consequence of V ⊇ Xs. Hence, ξ[n+ 1] ∈ V.

This proves the invariance of V concluding this demonstration. �

Notice that this invariance proof is less restrictive than the one provided by Lemma 3.1 since it takes

the maximum of the entire upper bound of v(ξ[n + 1]) while in the previous lemma the maximum is taken

individually from each term bounding v(ξ[n+ 1]). More discussions about invariant sets are provided at the end

of the next subsection where the output-dependent switching case will be studied.

3.2.2 Output-dependent Switching

To the best of my knowledge, all of the references to date studying switching function design for discrete-time

switched affine systems deal exclusively with state and/or time-dependent switching. Considering that in
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practical applications the state is seldom fully available, coping with this more realistic situation is an important

project feature. In this case, the switching strategy must take into account only a measured output to determine

which subsystem must be activated at each instant, assuring system global stability. Some methodologies in

other contexts can serve as inspiration, for instance Deaecto et al. (2011a); Pinto and Trofino (2014); Deaecto

(2016); Kolotelo et al. (2018).

Departing from Theorem 3.1, we will now address dynamic output feedback control design of switched

affine systems in the discrete-time domain. The design conditions to be presented were submitted for publication

in Egidio and Deaecto (nd) and assure global practical stability of a desired equilibrium point. When compared

to the results in Deaecto and Geromel (2017), the generalization of Theorem 3.1 to cope with the output feedback

control design requires less imposed structures on matrix variables to make the switching rule independent of

the system state, even though both methodologies are theoretically equivalent.

The proposed switching function takes into account a full-order switched affine filter given by the

state-space realization

ξ̂[n+ 1] = Âσ[n]ξ̂[n] + B̂σ[n]y[n] + ˆ̀
σ[n], ξ̂[0] = ξ̂0 (3.47)

with ξ̂ : N → Rnx being the filter state variable and the matrices (Âi, B̂i, ˆ̀
i), i ∈ K to be suitably designed.

Notice that the filter (3.47) is not an observer but a generic dynamic system. Actually, ξ̂ does not necessarily

converge to the system state ξ. Its objective is to provide essential information for the switching function

σ[n] = u(ξ̂[n]), making the switching strategy dependent only on the measured output y ∈ Rny through ξ̂ ∈ Rnx .

Figure 3.3 illustrates the proposed approach.

Defining the augmented state variable ξ̃ = [ξ′ ξ̂′]′ and connecting the filter (3.47) to the system (3.2) with

w[n] = 0, ∀i ∈ K and Ei = E, ∀i ∈ K, we obtainξ̃[n+ 1] = Ãσ[n]ξ̃[n] + ˜̀
σ[n], ξ̃[0] = ξ̃0

z[n] = Ẽξ̃[n]
(3.48)

with matrices

Ãi =

 Ai 0

B̂iCi Âi

 , ˜̀
i =

`i
ˆ̀
i

 , Ẽ′ =

E′
0

 , i ∈ K (3.49)

Full-order
switched filter

Switched
system

y[n]

ξ̂[n]

Switching
function

σ[n]

Figure 3.3: Block diagram showing the proposed output-dependent switching strategy.
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The idea is to design the switching function u(ξ̂) jointly with the filter matrices (Âi, B̂i, ˆ̀
i), i ∈ K to assure

practical stability of the origin ξ̃ = 0. This is done by optimizing an objective function related to the augmented

set of attraction X̃ . To this end, we propose two objective functions:

• The first one is the volume minimization of the ellipsoidal set X ⊃ X̃ , which is the projection of X̃ on the

subspace generated by the system state variable. The corresponding optimization problem is similar to the

one presented in Theorem 3.1.

• The second objective function is based on the minimization of an upper bound for the Euclidean norm of

the controlled output ‖z‖ when the state variable is inside the set of attraction. In this case, the set of

attraction becomes a ball in the vector space generated by the output z[n].

Notice that, in our context, the role of the switched filter is restricted to provide information for the switching

rule and, therefore, its steady state behavior is not of interest. For this reason, a measure of X has to be

defined depending only on the system state ξ ∈ Rnx . Moreover, to generalize the conditions in Theorem 3.1,

the dependency of the switching function on ξ must be avoided, as this variable is no longer available. For this

reason, consider the structured matrices

Q̃i =

Q Q̄

Q̄′ Q̂i

 , c̃i =

 c
ĉi

 , ρ̃i = ρi (3.50)

This structure is important to make the switching rule dependent only on the measured output through the

filter state variable ξ̂. Indeed, the evaluation of (3.10) for the augmented system with such structures provides

u(ξ̃) = arg min
i∈K
−ξ̃′Q̃iξ̃ + 2c̃′iξ̃ + ρ̃i

= arg min
i∈K
−ξ̂′Q̂iξ̂ + 2ĉ′iξ̂ + ρi = u(ξ̂) (3.51)

which is true since terms multiplying the system state are index independent.

Although the filter is essential for the switching function implementation, the optimization of the set of

attraction must be focused only on the subspace generated by the system state variable ξ ∈ Rnx . Seeking to

present a set of attraction independent of ξ̂, let us define the degenerate ellipsoid

X̃ = {ξ̃ ∈ R2nx : (ξ̃ − µ̃)′W̃ (ξ̃ − µ̃) ≤ 1} (3.52)

with structured matrices

W̃ =

W 0

0 0

 , µ̃ =

µ
0

 (3.53)

where W > 0. The ellipsoid X given by

X = {ξ ∈ Rnx : (ξ − µ)′W (ξ − µ) ≤ 1} (3.54)

can be interpreted as the projection of a general ellipsoid X̃ on the subspace generated by ξ ∈ Rnx (see Appendix

Section C, for more discussions).
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The next theorem presents the control design condition of an output-dependent switching function,

assuring practical stability through the volume minimization of the set of attraction given by (3.54).

Theorem 3.4. Consider the system (3.2) with w[n] = 0, ∀n ∈ N and let the equilibrium point xe ∈ Xe be given
with its associated vector λ ∈ Λ. If there exist symmetric matrices Z, Q, Q̂i, Y , W , matrices J , Li, Mi, vectors
νi, c, ĉi, h, g, and scalars ρi, solution to the convex optimization problem

inf
Z,Q,Q̂i,Y,W,J,Li,Mi,νi,c,ĉi,h,g,ρi

− ln(det(W )) s.t. (3.55)


Z −Q− J − J ′ − Q̂i • • • •

Z −Q− J Y −Q • • •
c′ + ĉ′i + h′(I −Ai) c′ + h′(I −Ai) ρi − 2`′ih • •

ZAi ZAi Z`i Z •
Y Ai + LiCi +Mi Y Ai + LiCi Y `i + νi Z Y

 > 0 (3.56)

for all i ∈ K and 
Q+ J + J ′ + Q̂λ • • •

Q+ J Q • •
−c′ − ĉ′λ −c′ 1− ρλ •
W W g W

 > 0 (3.57)

then the output-dependent switching function (3.51) and the switched filter (3.47) given by matrices

Âi = (Z − Y )−1Mi, B̂i = (Z − Y )−1Li, ˆ̀
i = (Z − Y )−1νi (3.58)

assure that ξ = 0 is a globally practically stable equilibrium point and

X∗ = {ξ ∈ Rnx : (ξ − µ)′W (ξ − µ) < 1} (3.59)

with µ = −W−1g, is an ellipsoidal set of attraction with minimum volume.

Proof: The proof consists in demonstrating that the LMIs (3.56) and (3.57) assure the validity of (3.8) and (3.9),

respectively, whenever the augmented matrices (3.49) and the structured ones (3.50) and (3.53) are taken into

account. Firstly, let us define the matrices

P̃ =

Y V

V ′ Ŷ

 , S̃ = P̃−1 =

X U

U ′ X̂

 , h̃ =

h
0

 , Γ̃ =

X I

U ′ 0

 (3.60)

The particular choice of h̃ is important to guarantee that ρ̃λ > 0 and, consequently, 0 ∈ Xs, as done in the proof of

Theorem 3.1. Indeed, from (3.8) evaluated for the presented augmented matrices, we have that ρ̃i > 2˜̀′
ih̃ = 2`′ih

and, as xe ∈ Xe implies that `λ = 0, we can conclude that ρ̃λ > 0. Notice that inequality (3.8) multiplied to the

left by diag(Γ̃′, I, Γ̃′) and to the right by its transpose, yields
Γ̃′P̃ Γ̃− Γ̃′Q̃iΓ̃ • •

c̃′iΓ̃ + h̃′(I − Ãi)Γ̃ ρ̃i − ˜̀′
ih̃− h̃′ ˜̀i •

Γ̃′P̃ ÃiΓ̃ Γ̃′P̃ ˜̀
i Γ̃′P̃ Γ̃

 > 0, i ∈ K (3.61)
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whereas inequality (3.9), multiplied to the left by diag(Γ̃′, I, I) and to the right by its transpose, produces
Γ̃′Q̃λΓ̃ • •

−c̃′λΓ̃ 1− ρ̃λ •

W̃ Γ̃ −W̃ µ̃ W̃

 ≥ 0 (3.62)

From the fact that P̃ S̃ = I, we obtain the identities

Y X + V U ′ = I, Y U + V X̂ = 0

V ′X + Ŷ U ′ = 0, V ′U + Ŷ X̂ = I
(3.63)

which allows us to calculate

Γ̃′P̃ Γ̃ =

X •

I Y

 , Γ̃′P̃ ÃiΓ̃ =

AiX Ai

Φi Y Ai + V B̂iCi

 , Γ̃′P̃ ˜̀
i =

 `i

Y `i + V ˆ̀
i

 , W̃ Γ̃ =

WX W

0 0

 (3.64)

Γ′Ã′ih̃ =

XA′ih
A′ih

 , Γ̃′Q̃iΓ̃ =

 Ψi •

QX + Q̄U ′ Q

 , Γ̃′h̃ =

Xh
h

 , Γ̃′c̃i =

Xc+ Uĉi

c

 (3.65)

with Φi = Y AiX + V B̂iCiX + V ÂiU
′ and Ψi = XQX +XQ̄U ′ + UQ̄′X + UQ̂iU

′. Replacing these identities

in (3.61) and (3.62) and multiplying both sides of the first one by diag(Z, I, I, Z, I) and the second one by

diag(Z, I, I, I, I), with Z = X−1, we obtain

Z − ZΨiZ • • • •

Z −Q− Q̄U ′Z Y −Q • • •

Πi c′ + h′(I −Ai) ρi − 2`′ih • •

ZAi ZAi Z`i Z •

ΦiZ Y Ai + V B̂iCi Y `i + V ˆ̀
i Z Y


> 0 (3.66)


ZΨλZ • • •

Q+ Q̄U ′Z Q • •

−c′ − ĉ′λU ′Z −c′ 1− ρλ •

W W −Wµ W

 ≥ 0 (3.67)

with Πi = c′ + ĉ′iU
′Z + h′(I − Ai), respectively. By replacing the variables Ri = ZUQ̂iU

′Z, J = Q̄U ′Z,

Mi = V ÂiU
′Z, Li = V B̂i, νi = V ˆ̀

i, d′i = ĉ′iU
′Z, notice that both (3.66) and (3.67) become linear matrix

inequalities and independent of U and V . This shows that, without loss of generality, one of these matrix

variables can be chosen arbitrarily such that det(V ) 6= 0 or det(U) 6= 0, while the other has to be determined

from the identity Y X +V U ′ = I, which is one of the conditions that assures P̃ S̃ = I. Therefore, choosing matrix

U = X we have V = Z − Y , which provides the filter matrices (3.58). Moreover, inequalities (3.66) and (3.67)

become (3.56) and (3.57), which assure the validity of (3.8) and (3.9) applied to the augmented system (3.48)

and considering the structured matrices (3.50), (3.53) and (3.60). It is worth remembering that the structure

of (3.50) is essential to make the switching rule dependent only on the filter state variable as demonstrated in

(3.51). Finally, notice that ξ̃ = ξ̃c ∈ X and ξ̃ = 0 ∈ X by the same arguments drawn in the state feedback case.
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The proof is concluded. �

We have just generalized Theorem 3.1 to cope with dynamic output feedback control design and the

associated optimization problem is still a convex one. An important remark about this result is that LMIs (3.56)

and (3.57) do not bound Y from above, a fact that may cause badly scaled filter matrices when the optimization

problem is solved. Indeed, (3.57) does not depend on Y . To show that Y can be taken arbitrarily large in (3.56)

as a feasible solution (whenever one exists), switch its second and fourth lines and columns and then, its second

and third lines and columns to obtain the equivalent inequality

Z −Q− J − J ′ − Q̂i • • • •

c′ + ĉ′i + h′(I −Ai) ρi − 2`′ih • • •

ZAi Z`i Z • •

Z −Q− J c+ (I −A′i)h A′iZ Y −Q •

Y Ai + LiCi +Mi Y `i + νi Z Y Ai + LiCi Y


> 0 (3.68)

Adopting new variables Yi = Y Ai + LiCi +Mi and Ni = Y `i + νi, let us apply the Schur Complement Lemma

with respect to the matrix block starting from (1, 1) to (3, 3), which results in two equivalent conditions

Wi =


Z −Q− J − J ′ − Q̂i • •

c′ + ĉ′i + h′(I −Ai) ρi − 2`′ih •

ZAi Z`i Z

 > 0 (3.69)

 Y −Q •

Y Ai + LiCi Y

− UiW−1
i U

′
i > 0 (3.70)

for all i ∈ K, where

Ui =

Z −Q− J c+ (I −A′i)h A′iZ

Yi Ni Z

 (3.71)

Notice that Y and Li are not present in (3.69) and can be taken arbitrarily large in (3.70) without restricting

the feasibility domain regarding the remaining variables. As a consequence, replacing (Y,Li) by (αY, αLi) with

α→∞, we have from (3.58) written in terms of Yi and Ni that

Âi = Ai + Y −1LiCi, B̂i = −Y −1Li, ˆ̀
i = `i (3.72)

which shows that the proposed filter also admits an observer form. Moreover, from (3.70) we have that Y −Q •

Y Ai + LiCi Y

 > 0 (3.73)

and, therefore, (3.56) becomes equivalent to Wi > 0 together with (Ai − B̂iCi)′Y (Ai − B̂iCi)− Y < −Q < 0,

where this last constraint holds whenever pairs (Ai, Ci) are quadratically detectable, that is, there exist gains

B̂i, i ∈ K, such that the closed-loop matrices Ai − B̂iCi, i ∈ K, share a common quadratic Lyapunov function.

With this in mind, the following theorem is of great importance to show that any set of attraction X obtained
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from the state-dependent switching function of Theorem 3.1 is also a set of attraction for the output-dependent

switching strategy of Theorem 3.4.

Theorem 3.5. For the discrete-time switched affine system (3.2) with w[n] = 0, ∀n ∈ N, consider P ∗, h∗,W ∗, g∗,
Q∗i , c

∗
i , ρ
∗
i , ∀i ∈ K forming the optimal solution to Theorem 3.1 and assuring the existence of a minimal ellipsoidal

set of attraction X and the corresponding state-dependent switching function. The design conditions (3.56) and
(3.57) for the output-dependent switching function in Theorem 3.4 hold for the same set of attraction X if and
only if matrix pairs (Ai, Ci), i ∈ K are quadratically detectable.

Proof: Assuming that (3.56) and (3.57) hold for the set of attraction X defined by W ∗ and h∗, the necessity

comes straightly from the fact that (3.56) implies (3.70), which implies quadratic detectability of the pairs

(Ai, Ci), ∀i ∈ K.

The proof of the sufficiency consists in demonstrating that whenever (3.8) and (3.9) are verified for an

arbitrary pair g∗,W ∗, there exist matrices satisfying (3.56) and (3.57) for the same g∗,W ∗. Let us firstly show

that (3.56) holds under the assumptions made in the theorem statement. As discussed previously, notice that

this LMI is equivalent to (3.69)-(3.70), which can be verified using the Schur Complement Lemma. Taking an

arbitrary ε > 0 and choosing Z = P ∗, h = h∗, Q = W ∗+ εI, J = −εI, Q̂i = Q∗i −W ∗+ εI, c = −g∗, ĉi = g∗+ c∗i

and ρi = ρ∗i we have that (3.69) becomes (3.8). Moreover, given the quadratic detectability of (Ai, Ci), i ∈ K,

inequality (3.70) is always satisfied by taking Y and B̂i, i ∈ K that fulfill

(Ai − B̂iCi)′Y (Ai − B̂iCi)− Y < 0, i ∈ K (3.74)

Now, to show that (3.57) is also true, let us multiply it to the left by Θ and to the right by Θ′ with

Θ =


I 0 0 0

0 0 I 0

0 0 0 I

0 I 0 −I

 (3.75)

and replace the chosen variables together with W = W ∗ and g = g∗, yielding
Q∗λ • • •

−c∗λ
′ 1− ρ∗λ • •

W ∗ g∗ W ∗ •

0 0 0 εI

 > 0 (3.76)

This is straightforwardly verified to be true from (3.9). The proof is concluded. �

This result is important since it demonstrates how the design of the switching function and the full-order

switched filter can be decoupled and the same optimal ellipsoidal set of attraction given by a state-dependent

switching function (from Theorem 3.1) can be assured. It is somewhat surprising that the volume of the minimal

ellipsoidal set of attraction for an output-dependent switching function does not depend on matrices Ci, i ∈ K.

Actually, if the system is practically stabilizable under state-dependent feedback, the only requirement for

practical stability in the output-dependent case is the quadratic detectability of pairs (Ai, Ci). Hence, for Ci
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fulfilling this constraint, filter matrices can be readily computed from (3.72) with Y and Li satisfying the LMI

(3.73) and the output-dependent switching function is given by the same matrices as the state-dependent one,

which is assured from the particular choice for (Q̂i, ĉi, ρi), made in proof of Theorem 3.5.

Finally, notice that if the designer wants to solve the more general optimization problem in Theorem 3.4,

numerical instability may be encountered given that Y is unbounded. To overcome this issue, we propose a

two-step design:

1. Calculate optimal matrices W and g defining the minimum volume ellipsoidal set of attraction X from the

convex optimization problem (3.7), which regards the state-feedback case.

2. Obtain the remaining matrices from one of following convex or quasi-convex optimization problems:

• Well scaled matrices can be obtained by employing

inf
Z,Q,Q̂i,Y,J,Li,Mi,νi,c,ĉi,h,ρi

tr(2Y − Z) s.t. (3.56)-(3.57) (3.77)

which is equivalent to minimize tr(P̃ ). This can be readily demonstrated from identities (3.63) along

with the discussion in the proof of Theorem 3.4.

• Better transient responses can be found from

inf
Z,Q,Q̂i,Y,J,Li,Mi,νi,c,ĉi,h,ρi

tr(Z) s.t. (3.56)-(3.57) (3.78)

but matrices Q̂i, i ∈ K, may be badly scaled. For this case, it has been empirically noticed that

adopting new matrices Ĝi = Q̂i −Q provides a well-scaled equivalent switching function

σ[n] = u(ξ̂[n]) = arg min
i∈K
−ξ̂[n]′Ĝiξ̂[n] + 2ĉ′iξ̂[n] + ρi (3.79)

• Similarly to what was done in Egidio et al. (2017), a minimum decay-rate guarantee β =
√

1− α can

be optimized. This is done by solving the generalized eigenvalue problem (see Boyd et al. (1994))

inf
Z,Q,Q̂i,Y,J,Li,Mi,νi,c,ĉi,h,ρi,α

α s.t. (3.57), α ≤ 1 and (3.80)



αZ −Q− J − J ′ − Q̂i • • • •

αZ −Q− J αY −Q • • •

c′ + ĉ′i + h′(I −Ai) c′ + h′(I −Ai) ρi − 2`′ih • •

ZAi ZAi Z`i Z •

Y Ai + LiCi +Mi Y Ai + LiCi Y `i + νi Z Y


> 0 (3.81)

Three secondary optimization functions were presented which allows obtaining possibly different switching

functions and filters for the same minimal ellipsoidal set of attraction X . Further theoretical discussions about

this topic are left for future works, as well as the adoption of other objective functions. The following example

will illustrate these last aspects.



CHAPTER 3. DISCRETE-TIME SWITCHED AFFINE SYSTEMS 77

Example 3.3. Let us adopt the same discrete-time switched affine system given in Example 3.1 but now
the state is not fully available to be measured. We have only access to the second state variable, which
can be used as an input for the full-order switched filter (3.47), responsible to dynamically provide the
switching function (3.51) with its state ξ̂. The considered output matrices are Ci = [0 1], ∀i ∈ K and the
desired equilibrium point is still the origin. To assure its global practical stability, the optimization problem
given in Theorem 3.4 was solved providing matrices

W =

[
1.8397 −0.2486

−0.2486 1.8290

]
, g = 0, (3.82)

which define the ellipsoidal set of attraction X as in (3.59) with area 1.7826. Not surprisingly, this is the
same (for the given precision) as the one obtained in the state-feedback case (see Example 3.1). With these
matrices given, we could recalculate the remaining optimization variables by the optimization problem
(3.77), yielding better-conditioned matrices

Â1 =

[
−0.1 −0.008

0.4 0.032

]
, Â2 =

[
−0.9 −0.072

0.6 0.048

]
(3.83)

Â3 =

[
0.3 0.024

1 0.08

]
, Â4 =

[
−0.5 −0.04

0.8 0.064

]
(3.84)

B̂1 =

[
0.8080

−0.8320

]
, B̂2 =

[
0.8719

0.4520

]
, B̂3 =

[
0.4760

0.6201

]
, B̂4 =

[
1.0400

0.2361

]
(3.85)

ˆ̀
1 =

[
−0.1

0

]
, ˆ̀

2 =

[
0.2

0.1

]
, ˆ̀

3 =

[
0

−0.1

]
, ˆ̀

4 =

[
−0.1

0

]
(3.86)

Q̂1 =

[
45.2317 15.1743

15.1743 −31.3030

]
, ĉ1 =

[
4.7455

10.5641

]
, ρ1 = 2.1527 (3.87)

Q̂2 =

[
−18.1916 17.5550

17.5550 5.8980

]
, ĉ2 =

[
0.3083

9.6440

]
, ρ2 = −3.2522 (3.88)

Q̂3 =

[
5.5572 −44.9537

−44.9537 15.1842

]
, ĉ3 =

[
−11.3510

−3.2814

]
, ρ3 = 2.9469 (3.89)

Q̂4 =

[
1.9951 13.5361

13.5361 −8.2319

]
, ĉ4 =

[
5.6075

−4.7086

]
, ρ4 = 2.1527 (3.90)

The correspondent filter and switching function assure global practical stability of the origin x = 0

and the existence of an ellipsoidal set of attraction X . State and filter trajectories evolving from x0 = [0 5]′

ξ̂0 = 0 are depicted in Figure 3.4 and the resultant switching sequence, in Figure 3.5. As can be observed,
this switched affine system, composed of four unstable subsystems, was also practically stabilized under the
output-dependent switching strategy just presented.
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Figure 3.4: System and filter state over time under the output-dependent switching rule.
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Figure 3.5: Switching signal generated by the output-dependent switching rule.

The second objective function, mentioned at the beginning of this subsection, can be now presented.

Compared to the volume minimization, this approach may be very useful in practical applications when the

designer is interested in the behavior of a specific controlled output instead of the full state variable ξ ∈ Rnx .

Next corollary introduces the associated convex optimization problem.

Corollary 3.1. Consider the system (3.2) with w[n],∀n ∈ N and let the equilibrium point xe ∈ Xe be given with
its associated λ ∈ Λ. If there exist symmetric matrices Z, Q, Q̂i, Y , matrices J , Li, Mi, vectors νi, c, ĉi, h,
and scalars ρi, γ solution to the problem

sup
Z,Q,Q̂i,Y,J,Li,Mi,νi,c,ĉi,h,ρi,γ

γ s.t. (3.56) and (3.91)

Q+ J + J ′ + Q̂λ − γE′E • •
Q+ J − γE′E Q− γE′E •
−c′ − ĉ′λ −c′ 1− ρλ

 > 0 (3.92)

then the output-dependent switching function (3.51) and the filter (3.47) given by matrices (3.58) assure that the
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origin is a globally practically stable equilibrium point and that the ball

B∗ = {z ∈ Rnz : z′z ≤ γ−1} (3.93)

is a set of attraction.

Proof: The proof is analogous to the one of Theorem 3.4 and consists in showing that (3.92) is equivalent to

(3.57) with W = γE′E and g = 0. This can be verified by applying the Schur Complement Lemma to (3.57)

with respect to the last row and column. The set of attraction X becomes thus

{ξ ∈ Rnx : ξ′E′Eξ ≤ γ−1} (3.94)

which is equivalent to (3.93). �

In certain practical applications this solution can be of greater interest than the volume minimization provided

by (3.7), mainly when the idea is to assure a good steady state performance of a specific controlled output. In

other words, this design procedure assures that,

z[n]′z[n] > γ−1 =⇒ ∆v(ξ[n]) < 0 (3.95)

Notice that the rank deficiency of E′E might be a concern related to the boundedness of the set of attraction.

Although the ball B∗ may be degenerate in the state-space, the existence of the bounded set of attraction Xs, as

given in (3.15), in its interior is always guaranteed by the strict inequality given in (3.92). Additionally, the

same issues previously discussed regarding how matrix Y can grow arbitrarily apply to this approach as well,

and a second step design might also be necessary, adapting the problems given in (3.77), (3.78) and (3.80). The

following example illustrates the results from Corollary 3.1.

Example 3.4. Let a rectangular differential-drive robot as illustrated in Figure 3.6 (see Siegwart et al.
(2011) for more information) which must move in circles on the plane. The forces f1 and f2 at the first and
second wheels, respectively, are executed by DC motors with neglectable inductance which can be controlled
in a bang-bang manner. This means that electronic switches can be commanded by a microprocessor to
power each of them with a battery or short circuit them, at each sampling instant.

L

ν

ω

f1

f2

Figure 3.6: Differential-drive robot.

However, due to resource limitations, only one encoder is available and it was attached to the first wheel.
This may also represent a fault context, where one of the encoders failed. The continuous-time dynamic
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model for linear and rotational velocities ν(t) and ω(t) is given by[
ν̇(t)

ω̇(t)

]
=

[
−2k2/(Rm)− c/m 0

0 −2L2k2/(RJ)− d/J

][
ν(t)

ω(t)

]
+

[
k(u1σ(t) + u2σ(t))/(Rm)

kL(u1σ(t) − u2σ(t))/(RJ)

]
(3.96)

where m is the robot mass, J is its moment of inertia, c and d are viscous friction coefficients, L represents
half of its width, R is the armature resistance of the DC motor, k is its electric constant and u1i, u2i are
applied voltages to the motor terminals, which depend on switching signal σ(t) as shown in Table 3.1.

Table 3.1: Switching states and corresponding applied voltages for the differential-drive robot.

σ u1σ u2σ

1 0 0
2 0 Vdc

3 Vdc 0
4 Vdc Vdc

The measured linear velocity of the first wheel can be written as

y(t) =
[
1 L

] [ν(t)

ω(t)

]
(3.97)

which allows us to define a continuous-time switched affine system. Consider a sampling period of T = 0.01 s
and that the state of the switches is held constant between sampling instants, the step-invariant discretization
procedure given in (2.77) can be applied to obtain an equivalent discrete-time switched affine system as
(3.1). System data is given in Table 3.2.

Table 3.2: System parameters adopted for the differential-drive robot.

Quantity Value Unit
m 0.4 kg
L 0.2 m
J m(2L)2/12 kg.m2

R 5 Ω

k 0.1 V.s/m
c 0.01 N.s/m
d 0.01 N.m.s/rad
Vdc 12 V

The desired circular trajectory is defined by νe = 4 m/s and ωe = 1 rad/s which can be expressed as an
equilibrium point xe = [νe ωe]

′ ∈ Xe associated with λ = [0.7721 0.0054 0.2171 0.0054] ∈ Λ. Solving the
optimization problem of Corollary 3.1 with E = diag(1, 6) we could obtain a set of attraction B∗ defined by
γ = 0.7301. Taking this optimal solution and solving the problem (3.78) adapted for this case, we obtained
the matrices

Y =

[
1.4649 0.0736

0.0736 1.4587

]
× 108, Z =

[
1.0424 −0.0000

−0.0000 0.7024

]
× 103 (3.98)

and the other matrix variables. By means of this solution, the switched full-order filter (3.47) and the
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switching function (3.51) were implemented. A numerical simulation provided the state trajectories for the
system and the filter depicted in Figure 3.7. Phase portraits for both filter and system state are given in
Figure 3.8 along with its initial condition. In the system phase portrait, we highlighted the initial condition
and the set of attraction B∗ defined in (3.93), while in the filter phase portrait, regions Oi, i ∈ K for each
subsystem were presented. The obtained switching sequence is also shown in Figure 3.9.
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Figure 3.7: System and filter state over time.
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These examples demonstrated how limited information about the system state can be enough for our control

methodology to assure global practical stability of a desired xe. Indeed, the proposed full-order filter and

switching function were successful in driving the robot by selecting properly when each motor should be powered,

measuring the velocity of a single wheel.

Finally, some discussions regarding the invariance property are in order. Indeed, conditions in Theorem

3.2 are still valid for an augmented system to provide an augmented invariant set of attraction as a level set

of the Lyapunov function. The following corollary relies on this fact to assure an invariant set of attraction

independent of the filter variable.

Corollary 3.2. For an optimal solution of Theorem 3.4, let the invariant set of attraction

Ṽ = {ξ̃ ∈ R2nx : v(ξ̃) < r} (3.99)

be given by means of a matrix P̃ , a vector h and a scalar r > 0, calculated through Theorem 3.2 with W̃ , P̃ and
h̃ provided in (3.53) and (3.60). There exists a time instant n0 ∈ N such that for all n ≥ n0 the set

V = {ξ ∈ Rnx : (ξ − h)′(Y − V Ŷ −1V ′)(ξ − h) < r} (3.100)

is an invariant set of attraction.

Proof: Consider the first instant n0 such that ξ̃[n0] ∈ Ṽ. Due to Lemma C.1, the ellipsoid V is the projection of

Ṽ onto the subspace generated by the system state-space. For this reason, we can conclude that ξ[n] ∈ V for all

n ≥ n0. �

Obtaining an invariant set of attraction for all n ∈ N dependent only on the system state variable seems to be an

intricate task, as the switching, critical for stability, is governed by the filter state. Notice that, as the invariant

set of attraction Ṽ was not minimized, applying this corollary may lead to a set V with large volume. For this

reason, one may generalize Theorem 3.3 in a similar way to what was done to Theorem 3.1 to obtain conditions

from Theorem 3.4, minimizing the projection set V given in (3.100). However, I rather focus on minimizing the

set of attraction X exclusively, as it is clearly smaller than V and sufficient to assure practical stability (see

Lemma 3.2).

The next subsection presents novel practical stability conditions, based on a more elaborate Lyapunov

function.

3.2.3 Min-type Lyapunov Functions

As the reader might have noticed so far, all stability conditions regarding discrete-time switched affine systems to

date are based on quadratic Lyapunov functions. Let us now discuss how a special class of Lyapunov functions

can be employed to reduce conservativeness and avoid some constraints. Firstly, notice that conditions in Deaecto

and Egidio (2016), Deaecto and Geromel (2017) and Theorems 3.1 and 3.4 require that the desired equilibrium

point xe must belong to a specific set Xe (as defined in (3.5)) associated to a vector λ ∈ Λ for which Aλ has

to be a Schur stable matrix. Our goal is to obtain design conditions for a switching function assuring global

practical stability of xe without imposing that it belongs to Xe nor any other specific set. Additionally, the
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existence of λ ∈ Λ such that Aλ is Schur stable will no longer be required. This is done by employing a min-type

Lyapunov function

v(ξ) = min
i∈K

ξ′Piξ (3.101)

and its associated switching function

σ[n] = u(ξ[n]) = arg min
i∈K

ξ[n]′Piξ[n] (3.102)

which are common in the context of linear systems (see Section 2.4) but have never been adopted in the study of

switched affine systems. Before presenting the results, let us recall an important family of matrices, which will

be of great importance in our developments. The subclass of Metzler matrices for the discrete-time switched

linear systems was previously defined as

Md =

{
Π = {πki} ∈ RN×N :

N∑
k=1

πki = 1, πki ≥ 0

}
(2.114 r.)

and contains matrices with interesting properties. Due to the Gershgorin Circle Theorem, all eigenvalues of a

matrix Π ∈Md are located in the complex plane inside circles centered at πii ≥ 0 with radius
∑
k∈K\{i} πki =

1− πii and, therefore, all eigenvalues are inside the unit circle. Besides, since e′Π = e′ with e′ = [1 1 · · · 1], the

Frobenius-Perron Theorem indicates that the eigenvalue of maximum modulus is equal to one (Perron-Frobenius

eigenvalue) and the associated eigenvector is positive componentwise. Let us also recall the definition

Pπi =
∑
k∈K

πkiPk (3.103)

which will be widely used afterward. The next theorem presents the conditions for which the switching function

(3.102) is globally practically stabilizing.

Theorem 3.6. Consider the system (3.1) and let xe ∈ Rnx be given. If there exist symmetric matrices W , Pi, a
Metzler matrix Π ∈Md, a vector g of compatible dimensions and positive scalars βi, solution to the optimization
problem

inf
Pi,Π,W,h,βi

− ln(det(W )) s.t. (3.104)
βiPi • • •

0 1 • •
βiPπiAi βiPπi`i βiPπi •
W g 0 W

 > 0, i ∈ K (3.105)

then the state-dependent switching function (3.102) assures that the set centered at µ = −W−1g given by

E∗ = {ξ ∈ Rnx : (ξ − µ)′W (ξ − µ) ≤ 1} (3.106)

is an ellipsoidal set of attraction for the system.

Proof: Consider an arbitrary trajectory of the system (3.2) and that at an instant of time n ∈ N the switching

rule is σ[n] = u(ξ[n]) = i ∈ K. To ease the notation we drop the time dependency of the variables denoting
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ξ[n] = ξ. The Lyapunov function (3.101) provides

∆v(ξ) = min
κ∈K

(Aiξ + `i)
′Pκ(Aiξ + `i)− ξ′Piξ

= min
λ∈Λ

(Aiξ + `i)
′Pλ(Aiξ + `i)− ξ′Piξ

≤ (Aiξ + `i)
′Pπi(Aiξ + `i)− ξ′Piξ

= ξ′(A′iPπiAi − Pi)ξ + 2ξ′ci + ρi (3.107)

where ci = A′iPπi`i and ρi = `′iPπi`i. Define the set Xs as being Xs =
⋃
i∈K Ei with

Ei = {ξ ∈ Rnx : (ξ − µi)′Qi(ξ − µi) ≤ c′iQ−1
i ci + ρi} (3.108)

where µi = Q−1
i ci and A′iPπiAi − Pi = −Qi. Making Qi > 0 and considering that the inequality (3.107) holds

for every u(ξ) = i ∈ K, we have the following properties: 0 ∈ Xs and ∆v(ξ) < 0, ∀ξ /∈ Xs. Notice that, Xs is

a nonconvex set of attraction whose volume is very hard to minimize or even compute. Then, let us find the

smallest ellipsoid E which contains Xs in its interior. Indeed, from inequalities (3.105), eliminating the second

and fourth rows and columns, it is simple to see that Qi = Pi − A′iPπiAi > 0, ∀i ∈ K. Moreover, replacing

g = −Wµ in (3.105) and performing the Schur Complement with respect to the last two rows and columns we

obtain  W •

−µ′W µ′Wµ− 1

 < βi

Qi •

−c′i −ρi

 , i ∈ K (3.109)

which multiplied to the right by [ξ′ 1]′ and to the left by its transpose, assures by S-procedure (see Appendix

Subsection A.4) that the ellipsoid E in (3.106) contains the union of sets Ei. The objective function is responsible

for minimizing the volume of E . The proof is concluded. �

Concerning this last theorem, the first point to be highlighted is that the set of attraction of interest is

actually

X =
⋃
i∈K

(Ei ∩ Oi) (3.110)

with the operating regions given as

Oi =
⋂

j∈K\{i}

{ξ ∈ Rnx : ξ′(Pi − Pj)ξ ≤ 0} (3.111)

which is clearly smaller than the set Xs considered in the proof of Theorem 3.6. Indeed, due to the switching

rule u(ξ) = i, the set X is determined taking into account that the ellipsoid Ei is considered only within the

region Oi. Geometrically, X represents the union of N ellipsoids, each of them intersected with N − 1 cones. A

graphical representation of one possible set of attraction X for N = 2 generated from Theorem 3.6 is depicted in

Figure 3.10, along with ellipsoids E1, E2 and E∗, switching surfaces C and operating regions O1 and O2, wherein

the designed switching function chooses u(ξ) = 1 and u(ξ) = 2, respectively.

More accurate design conditions, which take into account the intersections of (3.110), could be obtained
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Figure 3.10: Graphical representation of a nonconvex set of attraction provided by Theorem 3.6.

whenever there exist scalars θij > 0 such that the inequalities

 W •

−µ′W µ′Wµ− 1

 < βi

Qi +
∑

j∈K\{i}

(θij/βi)(Pi − Pj) •

−c′i −ρi


replace (3.109) for all i ∈ K. This implies the replacement of the first main diagonal block of (3.105) by

βiPi +
∑
j∈K\{i} θij(Pi − Pj). There is no doubt that the new conditions obtained after this replacement are

extremely difficult to solve because they imply in searching for N2 − N new parameters besides the N2 − 1

already existent in Theorem 3.6.

Notice that in this theorem the conditions form a nonconvex optimization problem due to the product of

variables {Π, Pi, βi}. A manner to solve (3.104) is by searching N2 −N elements of the Metzler matrix Π plus

N − 1 positive scalars since, without loss of generality, we can assume that one of the N free scalars βi is equal

to one. This can be simply verified by replacing Pi = Si/β1 and defining ψi = βi/β1 in (3.105). With some

abuse of notation, we represent Pi → Si and βi → ψi because this choice does not modify the result and the

developments afterward. This confirms that we can fix β1 = 1 in (3.105) and let the scalars βi > 0, ∀i ∈ K \ {1}.

To obtain more conservative, but simpler-to-solve conditions, where the only parameters to be searched

are those of the Metzler matrix, we can consider βi = β > 0, ∀i ∈ K, as stated in the next corollary.

Corollary 3.3. Theorem 3.6 remains valid whenever inequalities (3.105) are replaced by
Pi • • •
0 1 • •

PπiAi Pπi`i Pπi •
W g 0 W

 > 0, i ∈ K (3.112)

for all Pi > 0.

Proof: The proof comes from (3.105) by making βi = β > 0 and redefining Pi → βPi. �

About this result, some remarks are in order. Notice that, when compared to conditions of Theorem 3.6,

the ones of this corollary are numerically more amenable and do not seem to be too restrictive as it will be
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illustrated in Example 3.6. For a two subsystems case, the solution is obtained without difficulty by performing

a bidimensional search and solving a set of LMIs. However, for a greater number of subsystems, we can adopt

a more conservative but simpler-to-solve condition proposed in Geromel and Colaneri (2006b), derived from

a Metzler matrix with equal elements in the main diagonal, which reduces the dimension of variables to be

searched to one. Another point is that the condition for existence of a set of attraction proposed in Theorem 3.6

and Corollary 3.3 is

A′iPπiAi − Pi < 0, ∀i ∈ K (3.113)

and it contains the inequality ∑
i∈K

λiA
′
iSAi − S < 0 (3.114)

with S > 0 and λ ∈ Λ, as a particular case. At this point, recall that inequality (3.114) is the condition for

the existence of a set of attraction in references Deaecto and Egidio (2016) and Deaecto and Geromel (2017),

being the latter equivalent to Theorem 3.1 (see discussions after this theorem for further details). As it has

been already mentioned, both references take into account a quadratic Lyapunov function (3.6), with h = 0 in

Deaecto and Egidio (2016). Actually, conditions (3.113) and (3.114) are equivalent for the particular case where

we restrict the Metzler matrices to those with equal columns [λ · · · λ] ∈Md, λ ∈ Λ, for which Pπi = Pλ. With

this choice, inequality (3.113) multiplied by λi and summed up from i = 1 to N provides (3.114) for S = Pλ.

Conversely, let us define Pi = A′iSAi + εI > 0 for all i ∈ K and ε > 0. Hence, using (3.114) we have

Pλ − S =
∑
i∈K

λiA
′
iSAi − S + εI

≤ 0 (3.115)

for ε > 0 sufficiently small. Thus, as a consequence

A′iPλAi − Pi ≤ A′iSAi − Pi = −εI < 0 (3.116)

which enables us to conclude that (3.113) with Pπi = Pλ is satisfied. The first inequality comes from (3.115) and

the second is obtained replacing Pi = A′iSAi + εI, see Fioravanti et al. (2013) for more details. The comparison

of volumes with the cited references will be made numerically in Examples 3.6 and 3.7.

At this point, an interesting question that might emerge is why not apply a general min-type Lyapunov

function with the structure V (ξ) = mini∈K(ξ − ξci)′Pi(ξ − ξci) where ξci is determined adequately to minimize

some upper bound of ∆V (ξ), as in Deaecto and Geromel (2017), or directly from the optimization procedure, as

in Theorem 3.1. Unfortunately, the first option is not possible. Indeed, assuming that for an arbitrary instant of

time n ∈ N the switching function is σ[n] = u(ξ[n]) = i ∈ K, we have

∆V (ξ) ≤ fui(ξ, ξci) (3.117)

where

fui(ξ, ξci) =

 ξ
ξci

′Qi
 ξ
ξci

+ 2C′i

 ξ
ξci

+ ρi (3.118)



CHAPTER 3. DISCRETE-TIME SWITCHED AFFINE SYSTEMS 87

with ρi = `′iPπi`i and

Qi =

 −Qi •

Pi − PπiAi Pπi − Pi

 , C′i =

A′iPπi`i
−Pπi`i

′ (3.119)

Notice that it is not possible to determine the upper bound

∆V (ξ) ≤ min
ξci∈Rnx

max
ξ∈Rnx

fui(ξ, ξci) (3.120)

because the function fui(ξ, ξci) is concave with respect to ξ but it is not convex with respect to ξci since

Pπi − Pi =
∑

j∈K\{i}

πjiPj − (1− πii)Pi

=
∑

j∈K\{i}

πji(Pj − Pi) (3.121)

is a sign undefined matrix. Hence, the upper bound in (3.120) does not admit a saddle point. On the other

hand, letting ξci to be determined from the optimization procedure is a complex task, since the introduction of

ξci terms in inequalities (3.105) generate several bilinear terms and their linearization is left for future works.

The results presented so far regard the volume minimization of an ellipsoid as a manner of minimizing the

volume of the set of attraction X , but disregarding its invariance property. As previously discussed, nothing

assures that the state trajectory ξ remains in its interior, once it is attained. This fact motivates the search for

an associated invariant set of attraction

V = {ξ ∈ Rnx : v(ξ) < r∗} (3.122)

with r∗ > 0 obtained from

r∗ = max
ξ∈X

v(ξ) = inf
r>0
{r : v(ξ) < r, ∀ξ ∈ X} (3.123)

similarly to what was done in Theorem 3.2. The invariance property assures that whenever ξ[n] ∈ V then

ξ[n+ 1] ∈ V as well. That is, once the state trajectory attains V , its remaining part becomes confined to V . The

next theorem tackles this issue.

Theorem 3.7. Consider matrices Pi, i ∈ K, and Π ∈ Md that follow from the optimal solution to Theorem
3.6. The positive scalars r, βi, i ∈ K, and θij , i 6= j, (i, j) ∈ K×K, solution to the convex optimization problem

r∗ = inf
r,βi,θij

r s.t. (3.124)


βiPi +

∑
j∈K\{i}

θij(Pi − Pj) • • •

0 r • •
βiPπiAi βiPπi`i βiPπi •
Pi 0 0 Pi

 > 0 (3.125)

for all i ∈ K, assure that (3.122) is an invariant set of attraction.

Proof: Performing the Schur Complement with respect to the last two rows and columns of (3.125) and rearranging,
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we obtain Pi •

0 −r

 < βi

Qi +
∑

j∈K\{i}

(θij/βi)(Pi − Pj) •

−c′i −ρi

 (3.126)

for all i ∈ K, which multiplied to the left by [ξ′ 1] and to the right by its transpose assures that X ⊆ V, with X

defined as in (3.110). As has already been discussed, the definition (3.110) allows us to take into account that

each ellipsoid Ei must be considered only in the operating region Oi defined by the switching function u(ξ) = i.

To prove the invariance property let us consider that for an arbitrary instant n ∈ N we have σ[n] = i ∈ K and

that two important cases can occur:

1. If ξ ∈ V and ξ /∈ Ei ∩ Oi then ∆v(ξ) < 0 and ξ is converging to the origin. The same occurs if ξ /∈ V

because by consequence ξ /∈ Ei ∩ Oi since Ei ∩ Oi ⊆ V.

2. If ξ ∈ V and ξ ∈ Ei ∩ Oi, it follows from (3.107) that

v(Aiξ + `i) < v(ξ)− (ξ′Qiξ − 2ξ′ci − ρi)

≤ max
ξ∈Ei
{ξ′Piξ − (ξ′Qiξ − 2ξ′ci − ρi)}

= max
ξ∈Ei
{ξ′Piξ}

= ri (3.127)

with some ri > 0. The last two equalities have been obtained, performing similar steps to those in the

proof of Theorem 3.3. In fact, taking into account that Pi−Qi = A′iPπiAi > 0, it is possible to use Lemma

A.5 to obtain the first equality.

For all possible i ∈ K chosen by the switching function, a suitable upper bound for v(Aσξ + `σ) is r = maxi∈K ri

which is obtained by solving problem (3.124). �

Notice that the invariant set of attraction (3.122) is of min-type and, therefore, nonconvex. Alternatively, the

region

V =
⋃
i∈K
{ξ ∈ Rnx : ξ′Piξ ≤ r} (3.128)

also represents this set.

The next academical examples illustrate the previous results. In particular, the first one is based on an

affine system with two second order subsystems. It is presented a phase portrait containing the set of attraction

and the associated invariant one as well as a possible state trajectory. The second one compares the present

technique with the methodologies available in the literature in terms of volume minimization taking into account

three different systems, two of them borrowed from the literature.

Example 3.5. Let us consider the discrete-time switched affine system (3.1) defined by matrices (3.30) for
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all i ∈ K, with T = 0.5 s obtained by the step-invariant discretization presented in (2.77) where

Ac1 =

[
−5.8 −5.9

−4.1 −4.0

]
, bc1 =

[
0

−2

]
, Ac2 =

[
0.1 −0.5

−0.3 −5.0

]
, bc2 =

[
−2

2

]
(3.129)

represent two unstable subsystems. Our goal is to stabilize this system around the origin xe = [0 0]′.
Notice that this point does not belong to the set Xe normally adopted in the literature. The design of the
switching function σ[n] = u(x[n]) follows from the solution of Corollary 3.3, performed by searching the
elements (p, q) of the Metzler matrix

Π =

[
p 1− q

1− p q

]
(3.130)

inside the box [0, 1]× [0, 1]. The global optimal solution obtained for (p∗, q∗) = (0, 0) has provided an ellipse
E∗ with minimum area 19.54 and the matrices

P1 =

[
0.3234 0.4329

0.4329 3.0385

]
, P2 =

[
5.1154 4.5456

4.5456 4.5763

]

that are important to implement the stabilizing switching function u(x[n]). The associated set of attraction
X has presented an area of 6.29. Moreover, from Theorem 3.7 we have obtained the associated nonconvex
invariant set V with r∗ = 6.48 and area of 28.23. These three sets together with the switching surface
C = {x ∈ Rnx : x′P1x = x′P2x} are presented in Figure 3.11 as well as a trajectory x[n] starting from
x0 = [−10 5]′. Notice that the sequence x[n] is attracted to the set X but it can leave it at some
instants. However, as expected, once the state x[n] attains the invariant set, it remains confined to it.
The time evolution of this trajectory and the corresponding switching sequence σ[n] is shown in Figure
3.12, where it is clear that after the transient, the state remains near the desired equilibrium point.
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Figure 3.11: State trajectory ξ and sets of attraction assured from Corollary 3.3.
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Figure 3.12: Time evolution of trajectories ξ[n] and switching sequence σ[n], obtained from Corollary 3.3.

Example 3.6. In order to compare the present methodology with those of Deaecto and Egidio (2016) and
Theorem 3.1, in terms of volumes of the sets X and V , system data from Example 1 in Deaecto and Egidio
(2016) and Example 1 in Deaecto and Geromel (2017) were borrowed and named D1 and D2, respectively.
We have adopted the same equilibrium point xe ∈ Xe of the respective references. A third system D3 was
also compared, given by matrices Ai and bi obtained from (3.30) with T = 1 s and

Ac1 =

−3 −6 3

2 2 −3

1.6 0 −2

 , bc1 =

0.5

0

0

 , Ac2 =

 1 3 3

−0.2 −3 −3

0 0 −2

 , bc2 =

 0

0

0.5

 (3.131)

together with the point xe = (I −Aλ)−1bλ = [0.0845 0.0909 0.0283]′ for λ = [0.56 0.44].
Table 3.3 shows the volumes of the ellipsoid E∗ obtained by solving the conditions of Theorem 3.6, iden-

tified as T. 3.6, and Corollary 3.3, identified as C. 3.3, as well as the volumes of the set of attraction X and the
associated invariant set V , obtained from Theorem 3.7. For sake of comparison, we have solved the conditions
of Theorems 1 in Deaecto and Egidio (2016), identified as T. DE2016 and Theorem 3.1, as T. 3.1, to obtain the
minimal ellipsoidal sets of attraction X . The correspondent invariant set V was obtained from Theorem 3.2.

Table 3.3: Volume comparison for several switching functions and system data.

T. 3.6 C. 3.3 T. DE2016 T. 3.1

D1

E∗ 20.28 21.95 - -
X 17.92 17.05 222.22 31.34
V 214.70 183.68 5540.06 454.94

D2

E∗ 111.95 135.09 - -
X 79.84 73.26 224.35 50.98
V 493.02 447.50 2779.66 331.66

D3

E∗ 20.83 33.75 - -
X 2.57 14.23 infeas. infeas.
V 162.58 225.70 infeas. infeas.

Notice that for the first system D1, the volumes of X and V of T. 3.6 and C. 3.3 are always smaller
than the ones of T. DE2016 and T. 3.1. The same is true for the volume of the auxiliary ellipsoid E∗. This
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conclusion can not be drawn for the system D2, where the volumes of T. 3.1 are around 30% and 26%

smaller than C. 3.3 with respect to X and V, respectively. This can happen since T. 3.1 is based on a
quadratic but general Lyapunov function. However, the volumes in C. 3.3 are around 67% and 84% smaller
than the sets X and V of T. DE2016 which adopts a simple quadratic Lyapunov function.

Although the volumes sometimes can be greater than those of T. 3.1, the conditions for the existence
of a set of attraction in T. 3.6 and C. 3.3 are more general as previously proved. This fact was illustrated
by system D3 in Table 3.3, which does not satisfy the condition (3.114), i.e., there is no λ ∈ Λ such that
Aλ is Schur stable. Therefore, T. DE2016 and T. 3.1 could not ensure its practical stability.

Another remark concerns the fact that, nevertheless Corollary 3.3 is derived as a particular case from
Theorem 3.6, it presents smaller attraction set X for both systems D1 and D2. It may seem counterintuitive
that a more general condition as T. 3.6 provided a greater volume. However, this phenomenon may occur
since the minimized volume was that from ellipsoid E∗ and not that from set X .

For system D3 the solution to Theorem 3.6 obtained for (p∗, q∗) = (0, 0) in (3.130) has provided
(β1, β2) = (1, 0.1684) and matrices

P1 =

 1.5090 8.5303 −2.8394

8.5303 64.0829 −3.2703

−2.8394 −3.2703 66.2689

 (3.132)

P2 =

 3.9551 5.3460 −3.5290

5.3460 7.2309 −4.7687

−3.5290 −4.7687 3.1548

× 103 (3.133)

For this case, the invariant set V , guaranteed by Theorem 3.7, is defined as the sublevel set v(ξ) ≤ r∗ = 115.28.
For the system evolving from ξ[0] = [20 − 20 − 20]′, Figure 3.13 provides the time evolution of the
Lyapunov function as well as the switching sequence σ[n]. Shown in Figure 3.14 is the invariant set V
and the state trajectories. This example illustrated the efficiency and the validity of the proposed theory.
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Figure 3.13: Lyapunov function trajectory and the upper bound r∗ for the invariant set together with the
switching function (3.102).
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Figure 3.14: Phase portrait of a state trajectory converging to the invariant set of attraction V, in red.

3.2.4 Sampled-data Application

In this subsection, some discussions on the application of the practical stability results on sampled-data control

are given. As the reader could infer from some of the last examples, the stability conditions just presented are

suitable to deal with continuous-time switched affine systems of the form

ẋ(t) = Aσ(t)x(t) + bσ(t), x(0) = x0 (3.134)

under sampled-data switching control, where the switching signal is piecewise continuous

σ(t) = u(x(tn)), ∀t ∈ [tn, tn+1) (3.135)

with t0 = 0 and tn+1 > tn for all n ∈ N as it has been already defined in (2.139). For these cases, step-invariant

or norm-equivalent discretizations might be used to generate a discrete-time switched affine system whose state

trajectories x[n] form exactly sequences (x(tn))n∈N with tn > 0, n ∈ N being uniformly distributed sampling

instants with t0 = 0. Let us theoretically and numerically analyze the limit case where the sampling period

T = tn+1 − tn → 0 to verify the behavior of the optimal solutions to Theorems 3.1 and 3.6. To this end, observe

that the Taylor series expansion of the step-invariant discretization given in (2.77) for a continuous-time switched

affine system defined by matrices (Aci, bci), i ∈ K is given as

Ai = I + TAci +O(T 2), bi = Tbci +O(T 2), i ∈ K (3.136)

where O(T 2) represents higher order terms on T . Whenever T is taken arbitrarily small, the approximation

Ai ≈ I + TAci, bi ≈ Tbci is valid and consequently, the set of attainable equilibrium points of Theorem 3.1

becomes the one of Theorem 2.15, for the continuous-time case. This can be verified from the definition of Xe in

(3.5) and of Xc
e in (2.125). Consequently `i → T`ci with `ci = Acixe + bci and, therefore, `λ = `cλ = 0. Finally,
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the switching function design conditions (3.8) and (3.9) are fulfilled for a singleton set of attraction X∗ = {0}

whenever there exists S > 0 such that A′λS + SAλ < 0, which is the sufficient and necessary condition for

feasibility of Theorem 2.15. Indeed, replacing the previously mentioned approximation in (3.8), after eliminating

higher order terms, we have

T

A′ciP + PAci •

`′ciP + h′Aci 2`′cih

 <
−Qi •

c′i ρi

 (3.137)

Without loss of generality, choosing h = 0, g = −Wµ = 0, −Qi = T (A′ciP + PAci), ci = TP`ci and ρi = 1 for

all i ∈ K which clearly satisfy this inequality, condition (3.9) rewritten as−Qλ •

cλ ρλ − 1

 < −
 W •

−µ′W µ′Wµ

 (3.138)

is turned to T (A′cλP +PAcλ) < −W . Notice that choosing P = T−1S for some S > 0, the matrix W > 0 can be

taken arbitrarily large whenever Aλ is a Hurwitz stable matrix, what makes X∗ → {0}. Moreover, the switching

function (3.10) becomes

u(ξ[n]) = arg min
i∈K
−ξ[n]′Qiξ[n] + 2c′iξ[n] + ρi

= arg min
i∈K

ξ[n]′S(Aciξ[n] + `ci)

= arg min
i∈K

ξ(t)′S(Aciξ(t) + `ci) = u(ξ(t))

where the last equality takes into account that u(ξ[n]) = u(ξ(tn)) = u(ξ(t)) whenever T → 0, which is the same

as the continuous-time one given in (2.130) considering only stability.

Regarding now stability conditions in Theorem 3.6, unfortunately, it is not possible to guarantee that X∗
turns into a singleton when T → 0. This will be numerically illustrated in the sequel by means of an example.

Additionally, it is important to remark that the continuous-time switching function cannot be written in the

form of (3.102), from Theorem 3.6, due to the absence of a linear term inside the arg min expression. The next

example compares both methodologies numerically.

Example 3.7. Consider the sampled-data switched affine system given as in (3.134) with matrices

Ac1 =

[
0 1

−1 −3

]
, Ac2 =

[
0 1

−5 −3

]
, Ac3 =

[
0 1

−3 −1

]
, bc1 =

[
1

−4

]
, bc2 =

[
1

−1

]
, bc3 =

[
−2

3

]
(3.139)

where the goal is to stabilize the state x(t) around the origin x = 0 by only commanding the switching
signal. However, switching can only occur at sampling instants. In other words, the switching signal is
constrained to be piecewise constant, as given in (2.139). Employing the step-invariant discretization (2.77),
this system is exactly represented by a discrete-time switched affine system. For 20 evenly distributed
values of sampling time T ∈ [10−3, 2] s, practical stability of the origin was verified via Theorem 3.1 and
Corollary 3.3, adopting Π = [λ λ λ] with λ ∈ Λ associated with 0 ∈ Xe. Along this grid, the existence of
a globally practically stabilizing switching function was guaranteed for all T but T = 2 s (for which there
is no λ ∈ Λ such that 0 ∈ Xe) and the area of the sets of attraction X obtained from both methods are
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presented in Figure 3.15. Observe that for T = 10−3 s the area obtained from Theorem 3.1 (solid black line)
tends to zero while the one of Corollary 3.3 (dashed red line) does not. However, for this example, smaller
sets of attraction in terms of area are obtained from the corollary when larger values of T are adopted.
This illustrates once more that none of the techniques overcome another in terms of volume minimization
and that X may not tend to a singleton when T → 0 for Corollary 3.3 and the given Metzler matrix.
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Figure 3.15: Area of the set of atraction X calculated from Theorem 3.1 (solid black) and Corollary 3.3
(dashed red) for various sampling periods T .

A brief remark on this example is in order. The particular choice for the Metzler matrix is to certify that

both conditions are equivalent in terms of the existence of X . This is a consequence of equation (3.116) and

following discussions.

This concludes our discussions about practical stability for switched affine systems. The next section

presents the alternative approach previously discussed, which is based on limit cycles instead of sets of attraction.

3.3 Limit Cycle Stability

In the last section, state trajectories were guided to a sufficiently small set of attraction containing a desired

point of interest. However, their behavior inside this set may not be predicted a priori. Indeed, in steady-state,

nothing beyond bounds for the error can be derived. Consequently, neither H2 nor H∞ performance indexes

can be studied, as they are defined only for asymptotically stable systems, see Section 2.4. To the best of my

knowledge, there are only a few results available in the literature dealing with asymptotic stability of a limit

cycle for switched affine systems, and none of them regards the discrete-time domain. Very recently, and only for

the continuous-time domain, some references treated the asymptotic stabilization not to a single point but to a

limit cycle as a manner of controlling the steady-state behavior, see Benmiloud et al. (2019) as an example of

local stabilization and Patino et al. (2010), which is based on a predictive control approach. In the context of

hybrid systems, global asymptotic stability of limit cycles was studied by Rubensson and Lennartson (2000),

but this approach considers a given switching pattern and no design procedure is presented. Also, authors in

Sferlazza et al. (2019) study the limit cycle generated by the trajectories of a DC-DC boost converter when the
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dwell time constraints are imposed on the adopted hybrid control strategy.

A new design methodology for a min-type state-dependent switching function to assure global asymptotic

stability of limit cycles will be addressed in this section. These results were accepted for publication in Egidio

et al. (2020). Firstly, a set of possible limit cycles related to periodic switching sequences is determined, and a

subset of candidates is chosen by the designer based on specific criteria related to the desired behavior of the

trajectories in the steady state. Afterward, a min-type switching function is designed based on a time-varying

convex Lyapunov function to assure global asymptotic stability of the chosen limit cycle, as well as H2 or

H∞ guaranteed cost. In the context of switched affine systems, these indexes were only employed for the

continuous-time case, see Trofino et al. (2012), Deaecto and Santos (2015) and Deaecto (2016) as instances.

Finally, the adoption of time-varying Lyapunov functions also allows reducing the degree of conservativeness of

the switching function design, as it will be later illustrated.

3.3.1 Problem Statement

Before beginning, let us recall system (3.1), repeated here for convenience x[n+ 1] = Aσ[n]x[n] + bσ[n] +Hσ[n]w[n], x[−1] = xe[−1]

z[n] = Eσ[n]x[n] +Gσ[n]w[n]
(3.140)

but defined for all n ∈ N− with N− = N ∪ {−1}. Consider that for w[n] = 0,∀n ∈ N− it admits a periodic

solution xe[n] with period κ ∈ N+ chosen by the designer.

Let us now formally define the aforementioned limit cycle as a periodic sequence Xe(c), given as

Xe(c) = {xe[k(n)] : xe[n+ 1] = Ac[k(n)]xe[n] + bc[k(n)], n∈ N−} (3.141)

where c = (c[0], · · · , c[κ − 1]) ∈ Kκ is a sequence of indexes that defines the fundamental period, given by

the finite sequence (xe[0], · · · , xe[κ − 1]). The function k(n) = n mod κ will be extensively used from now

on to indicate periodicity. Indeed, xe[n] is an equilibrium solution for the system (3.140) with w[n] = 0 and

σ[n] = c[k(n)], which satisfies

xe[n+ 1] = Ac[k(n)]xe[n] + bc[k(n)] (3.142)

The design of the limit cycle is connected to the choice of the sequence c[n], which can be selected from a set Kκ

with Nκ possible ones. As will be discussed in the next subsection, this selection is made according to criteria

related to the steady-state behavior of the trajectories.

Defining the auxiliary state variable ξ[n] = x[n]− xe[n], xe[n] ∈ X ∗e , we obtain from the original switched

affine system (3.140) an equivalent time-varying system ξ[n+ 1] = Aσ[n]ξ[n] + `σ[n][n] +Hσ[n]w[n], ξ[−1] = 0

ze[n] = Eσ[n]ξ[n] +Gσ[n]w[n]
(3.143)

For the sake of clarity, the initial time instant will be sometimes considered to be n = −1 and sometimes

n = 0 and this will be made clear throughout this section. The time-varying vectors are given by `i[n] =

Aixe[n]− xe[n+ 1] + bi, ∀i ∈ K, and the new performance output is ze[n] = z[n]−Eσ[n]xe[n], ∀n ∈ N−. Notice
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that, whenever the trajectories of (3.140) reach the limit cycle, i.e, x[n] = xe[n] ∈ X ∗e , we have ξ[n] = 0 and,

therefore, the origin is an equilibrium point of the equivalent system (3.143). Hence, the following definition is

welcome at this point.

Definition 3.3 (Globally asymptotically stable limit cycle). A limit cycle X ∗e is a globally asymptotically
stable limit cycle for the discrete-time switched affine system (3.140) if the origin of the equivalent time-varying
system (3.143) is a globally asymptotically stable equilibrium point.

Our goal is to design a state-dependent switching function u : Rnx ×N− → K to assure global asymptotic

stability of the limit cycle X ∗e . In other words, we want to design σ[n] = u(x[n], n) to guarantee that the origin

ξ = 0 of (3.143) be a globally asymptotically stable equilibrium point, assuring a suitable upper bound for the

H2 and H∞ performance indexes, defined previously for (2.112), and redefined in this chapter for convenience as

follows:

• H2 performance index: Considering that the system (3.143), defined for all n ∈ N− with ξ[−1] = 0, is

asymptotically stable, this index is given by

J2 =

nw∑
r=1

‖zer‖22 + e′rG
′
σ[−1]Gσ[−1]er (3.144)

where zer[n], is the controlled output corresponding to the impulsive inputs w[n] = erδ[n+ 1] with vector

er, r ∈ {1, · · · , nw}, forming the standard basis and δ[n] being the impulse function.

• H∞ performance index: Considering that the system (3.143), defined for n ∈ N with ξ[0] = 0, is

asymptotically stable, this index is given by

J∞ = sup
w∈L d

2 \{0}

‖ze‖22
‖w‖22

(3.145)

As has already been mentioned, these indexes equal the H2 or H∞ squared norm of the i-th subsystem

translated to its equilibrium, whenever they exist and the switching rule is kept constant, that is, σ[n] = i ∈

K, ∀n ∈ N−. Moreover, they require that the system be asymptotically stable and, therefore, cannot be evaluated

by the methodologies available dealing with sets of attraction when only practical stability is assessed. This

occurs because, under these methodologies, the L d
2 -norm ‖ze‖2 does not converge.

Our design conditions are based on the following convex time-varying Lyapunov function

v(ξ[n], n) = ξ[n]′P [k(n)]ξ[n] (3.146)

with P [n] > 0, n ∈ {0, · · · , κ − 1}, to be determined. This function has been recently used in Deaecto and

Geromel (2018) and Daiha et al. (2017) to study the stability of switched linear systems and, certainly, provides

less conservative conditions than the time-invariant quadratic Lyapunov function, recurrent in the literature of

switched affine systems.
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3.3.2 Limit Cycle Generation

To avoid misinterpretations, let us firstly state that periodic switching functions will be employed strictly to

generate candidate limit cycles. In the general case, the switching functions σ[n] = u(ξ[n], n) that we seek to

design do not generate periodic switching sequences since it is state-dependent. At this point some definitions,

borrowed from Deaecto and Geromel (2018), are important. For a given positive κ ∈ N that defines the desired

period of the limit cycle, let C(κ) = Kκ be the set obtained from the Cartesian product of K by itself κ times.

This set contains Nκ elements c ∈ C(κ), which are finite sequences c = (c[0], · · · , c[κ− 1]).

Associated to each c ∈ C(κ) there exists Xe(c), given in (3.141), of which first κ points xe[n], n ∈

{0, · · · , κ− 1}, can be obtained from (3.142) with xe[0] = xe[κ] as the solution of the linear equation

Ã(c)x̃e = −b̃(c) (3.147)

where x̃e = [xe[0]′ xe[1]′ · · · xe[κ− 1]′]′, the matrix

Ã(c) =


Ac[0] −I 0 · · · 0

0 Ac[1] −I · · · 0
...

...
...

. . .
...

−I 0 0 · · · Ac[κ−1]

 (3.148)

and b̃(c) = [b′c[0] b
′
c[1] · · · b

′
c[κ−1]]

′. Notice that the boundary condition xe[0] = xe[κ] that naturally arises from

the fact that xe[n] = xe(k[n]) has been taken into account in the last row of Ã(c) and that due to (3.142) all the

limit cycles satisfy the identity `c[n][n] = 0.

The Nκ different switching sequences c ∈ C(κ) allow us to define the family of candidate limit cycles

X = {Xe(c) : c ∈ C(κ)} (3.149)

The search for a desired limit cycle X ∗e ∈ X, defining properties of interest for the trajectories of (3.140) in the

steady state, as ripple amplitude and oscillation frequency, can be constrained to a subset Xs ⊆ X, which is

related to some criterion specified by the designer. Given a reference point x∗, a possible criterion is

Xs =

{
Xe ∈ X :

1

κ

κ−1∑
n=0

‖Γ(xe[n]− x∗)‖ < 1

}
(3.150)

which contains candidate limit cycles with mean distance between Γxe[n] and Γx∗ over n ∈ {0, · · · , κ−1} smaller

than 1. The matrix Γ provided by the designer is important when the interest is to optimize the steady-state

behavior of only one or a combination of state components. Alternatively, when the goal is to bound the ripple

amplitudes of the trajectories in the steady state, another possibility is to adopt the subset

Xs =

{
Xe ∈ X : max

n∈{0,··· ,κ−1}
‖Γ(xe[n]− x∗)‖∞ < 1

}
(3.151)

with, as in the first case, Γ being a parameter provided by the designer. Notice that the criterion choice depends

exclusively on the interest of the designer with respect to the steady-state behavior of the trajectories, which
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can define different sets Xs. The subset of sequences c associated to Xe(c) ∈ Xs is defined as Cs(κ) ⊆ C(κ).

Sufficiently restricting the subset of candidates leads to a set Cs(κ) with fewer elements, which will show to be

an interesting aspect from a computational point of view. The next theorem relies upon the results of Bittanti

and Colaneri (2009) to provide conditions that assure the existence of a globally asymptotically stable limit

cycle Xe(c) ∈ Xs to be considered in the forthcoming developments.

Theorem 3.8. Consider system (3.140) with w[n] = 0, ∀n ∈ N−, and let κ ∈ N+ and c ∈ Cs(κ) be given. The
limit cycle Xe(c) ∈ Xs under the periodic switching sequence σ[n] = c[k(n)] is globally asymptotically stable if and
only if there exist positive definite matrices P [n] > 0, n ∈ {0, · · · , κ− 1}, satisfying the linear matrix inequalities

A′c[n]P [n+ 1]Ac[n] − P [n] < 0 (3.152)

for all n ∈ {0, · · · , κ− 1}, with the boundary condition P [κ] = P [0].

Proof: Consider system (3.140) with w[n] = 0, ∀n ∈ N−, written alternatively as (3.143) and governed by the

periodic switching sequence σ[n] = c[k(n)] ∈ Cs(κ). Associated to this sequence, the limit cycle Xe(c) ∈ Xs

defined in (3.141) assures that Ã(c)x̃e = −b̃(c) holds, which is equivalent to verify the identity

`c[n][n] = Ac[n]xe[n]− xe[n+ 1] + bc[n] = 0 (3.153)

for all n ∈ {0, · · · , κ − 1} and xe[0] = xe[κ]. With the identity (3.153), the system becomes a periodic linear

system ξ[n + 1] = Ac[n]ξ[n]. Hence, due to Proposition 3.5 of Bittanti and Colaneri (2009), the condition

(3.152) is necessary and sufficient for global asymptotic stability of the origin ξ = 0 regarding system (3.143), or

equivalently, for the global asymptotic stability of the limit cycle Xe(c) concerning system (3.140). �

As will be clear in the next subsection, for every limit cycle X ∗e chosen inside Xs, that satisfies the

conditions of Theorem 3.8, it is possible to determine state-dependent switching functions, which not only

preserve global asymptotic stability of the limit cycle, but also optimize an upper bound for the previously

defined H2 and H∞ performance indexes. Before proceeding, let us define the matrix function

Li[n]=

A′iP [n+ 1]Ai − P [n] •

`i[n]′P [n+ 1]Ai `i[n]′P [n+ 1]`i[n]

 (3.154)

since it will be useful afterward.

3.3.3 State and Time-dependent Switching

At this first moment, our goal is to determine a state-dependent switching function σ[n] = u(x[n], n) that assures

global asymptotic stability of the limit cycle X ∗e ∈ Xs chosen as the one that minimizes the upper bound for the

square L2-norm ‖ze‖22. For this purpose, let us consider the simpler translated system ξ[n+ 1] = Aσ[n]ξ[n] + `σ[n][n], ξ[0] = x[0]− xe[0]

ze[n] = Eσ[n]ξ[n]
(3.155)

with xe[n] ∈ X ∗e . The next theorem presents this result.
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Theorem 3.9. Consider system (3.140) with w[n] = 0, ∀n ∈ N−, evolving from an arbitrary x[0]. Let the scalar
κ ∈ N+ and the set of candidate limit cycles Xe(c) ∈ Xs, ∀c ∈ Cs(κ) be given. If there exist positive definite
matrices P [n] > 0 satisfying the optimization problem

min
Xe(c)∈Xs

inf
P [n]

(x[0]− xe[0])′P [0](x[0]− xe[0]) s.t. (3.156)

A′c[n]P [n+ 1]Ac[n] − P [n] + E′c[n]Ec[n] < 0 (3.157)

for all n ∈ {0, · · · , κ− 1}, c ∈ Cs(κ) with the boundary condition P [κ] = P [0], then the state-dependent switching
function σ[n] = u(ξ[n], n) with

u(ξ, n) = arg min
i∈K

[
ξ

1

]′
Li[k(n)]

[
ξ

1

]
+ ξ′E′iEiξ (3.158)

assures that the limit cycle X ∗e = Xe(c), solution to (3.156), is globally asymptotically stable and that the following
upper bound

‖ze‖22 < (x[0]− xe[0])′P [0](x[0]− xe[0]) (3.159)

is a guaranteed performance cost.

Proof: Notice that the system under consideration can be rewritten alternatively as (3.155) and adopt the

switching function (3.158). For an arbitrary trajectory of (3.143) in the time interval n ∈ {0, · · · , κ− 1}, the

Lyapunov function (3.146) provides

∆v(ξ, n) =

ξ
1

′ Lσ[n][n]

ξ
1

+ ξ′E′σ[n]Eσ[n]ξ − z′eze

= min
i∈K

ξ
1

′ Li[n]

ξ
1

+ ξ′E′iEiξ − z′eze

≤

ξ
1

′ Lc[n][n]

ξ
1

+ ξ′E′c[n]Ec[n]ξ − z′eze

= ξ′(A′c[n]P [n+ 1]Ac[n] − P [n] + E′c[n]Ec[n])ξ − z′eze

< −z′eze (3.160)

where the second equality comes from the switching function (3.158), the first inequality is a consequence of the

minimum operator and the third equality is due to the fact that the sequence c ∈ Cs(κ), associated with the

limit cycle X ∗e ∈ Xs, assures that the identity (3.153) holds. Finally, the last inequality is verified by the validity

of (3.157). From the periodic continuation P [n] = P [k(n)] we have that ∆v(ξ, n) < −z′eze < 0 for all n ∈ N and,

therefore, the equilibrium point ξ = 0 is globally asymptotically stable. Consequently, the same occurs for the

limit cycle X ∗e , regarding the original system. Moreover, summing both sides of (3.160) from n = 0 up to infinity,

we obtain a telescoping series which assures

∞∑
n=0

∆v(ξ[n], n) = −v(ξ[0], 0) < −
∞∑
n=0

‖ze‖2 (3.161)
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verifying (3.159) and concluding the proof. �

About this result, some remarks are in order. This theorem presents conditions for the design of the

mentioned state-dependent switching function. Notice that, for the particular case where σ[n] = c[k(n)], it

is simple to show that ‖ze‖22 = (x[0] − xe[0])′P [0](x[0] − xe[0]) where P [0] > 0 is the solution of A′c[n]P [n +

1]Ac[n]−P [n]+E′c[n]Ec[n] = 0 for all n ∈ {0, · · · , κ−1} and P [κ] = P [0]. This indicates that the state-dependent

switching function (3.158) provides an actual cost which is better than, or at least equal to, the one provided by

a periodic switching function.

To the best of my knowledge, this is the first result dealing with global asymptotic stability of a desired

limit cycle for discrete-time switched affine systems. Even for the continuous-time domain there are only few

results in the literature, for instance, the recent reference Benmiloud et al. (2019) that deals with local asymptotic

stability using a systematic methodology based on a Poincaré map approach. Differently, the conditions proposed

in Theorem 3.9 are expressed by means of LMIs being, therefore, simple-to-solve by readily available algorithms.

Compared to the conditions for practical stability, the inequalities (3.157) are less conservative than the methods

based on a simple time-invariant quadratic Lyapunov function, as those in Theorems 3.1 and 3.3, and are not

comparable to the Lyapunov-Metzler conditions, given in Theorem 3.6, as discussed in Daiha et al. (2017). The

following example, borrowed from Egidio et al. (2020), illustrates this result.

Example 3.8. Consider the switched affine system (3.140) with w[n] = 0 and composed of two unstable
subsystems defined by (3.30) with T = 0.1 s and

Ac1 =

[
−4 3

−3 2.5

]
, bc1 =

[
0

−2

]
, E1 = I

Ac2 =

[
4 −1

1 −2

]
, bc2 =

[
0

8

]
, E2 = I

The goal is to control the first state component toward an average value near −9 in the steady state. To
this end, for κ = 10, a set of candidate limit cycles was defined as in (3.150) with x∗ = [−9 ?]′, where the
symbol “?” indicates a value without importance, Γ = [1 0], which produced an Xs ⊂ X with 10 candidate
limit cycles whose average value of the first state component is inside the interval (−10,−8). Solving the
optimization problem of Theorem 3.9, matrices P [n] and the optimal limit cycle X ∗e , correspondent to the
optimal sequence c = (1, 1, 1, 1, 1, 1, 1, 1, 1, 2) ∈ Cs(κ) have been found, allowing the implementation
of the switching function (3.158). The limit cycle X ∗e is presented in the Figure 3.16 along with a trajectory
x[n] starting from x[0] = [1 1]′, where the arrow represents the direction of the state trajectories on X ∗e .
Figure 3.17 and Figure 3.18 show, respectively, the state trajectories ξ[n] and the switching signal σ[n] over
time instants n. Notice that the trajectories x[n] converged to the chosen limit cycle while, as expected,
ξ[n] tended to zero. By numerical simulation, we have calculated ‖z‖22 = 2417.53 which respects its upper
bound 3945.57, defined in (3.159). This puts in evidence the efficiency of the proposed switching strategy.
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Figure 3.16: State trajectory x[n] and limit cycle X ∗e

0 10 20 30 40 50 60 70

0

5

10

15

Figure 3.17: Time evolution of the auxiliary state ξ[n].
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Figure 3.18: Obtained switching signal σ[n].

An interesting remark about this result is that a better performance can be obtained by a suitable choice

of κ, allowing performance optimization in the steady and transient states. Fortunately, κ ∈ N+ does not need

to be large to achieve an adequate guaranteed cost. Actually, as it has been discussed in Deaecto and Geromel

(2018), whenever κ̂ = ηκ, for some η ∈ N+, it is possible to assure that the costs are non increasing as η increases

since Cs(ηκ) contains all the periodic sequences Cs(κ) as a particular case. However, nothing can be concluded

about the costs for the case when κ̂ > κ but κ̂ 6= ηκ for all η ∈ N such that η ≥ 2. The next subsections

generalize Theorem 3.8 to deal with H2 and H∞ control design.
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3.3.4 H2 Performance

Consider the switched affine system (3.140) with an initial condition x[−1] = xe[−1] and an external input of

impulsive type w[n] = erδ[n+ 1], where er, r ∈ {0, · · · , nw}, are vectors forming the standard basis. This system

can be equivalently rewritten as (3.155) but evolving from initial condition ξ[0] = `σ[−1][−1] +Hσ[−1]er. The

next corollary presents an upper bound for the H2 performance index defined in (3.144).

Corollary 3.4. Consider system (3.140) evolving from x[−1] = xe[−1] with w[n] = erδ[n+ 1]. Let the scalar
κ ∈ N+, the set of candidate limit cycles Xe(c) ∈ Xs, ∀c ∈ Cs(κ), and σ[−1] = m be given. If there exist positive
definite matrices P [n] > 0 satisfying the optimization problem

min
Xe(c)∈Xs

inf
P [n]

tr
(

(Lm +Hm)′P [0](Lm +Hm) +G′mGm

)
(3.162)

where Lm = [`m[−1] · · · `m[−1]] ∈ Rnx×nw and `m[−1] = Amxe[−1]− xe[0] + bm, subject to the linear matrix
inequalities (3.157), for all n ∈ {0, · · · , κ − 1}, c ∈ Cs(κ) with the boundary condition P [κ] = P [0], then the
state-dependent switching function σ[n] = u(ξ[n], n) with (3.158) assures that the limit cycle X ∗e = Xe(c), solution
to (3.162), is globally asymptotically stable and the upper bound

J2 < tr
(

(Lm +Hm)′P [0](Lm +Hm) +G′mGm

)
= J̄2 (3.163)

is an H2 guaranteed cost of performance.

Proof: From Theorem 3.9, asymptotic stability is assured by the switching function (3.158) and the inequality

‖ze‖22 < ξ[0]′P [0]ξ[0] with ξ[0] = x[0]− xe[0] holds. Hence, from (3.144), we have

J2 =

nw∑
r=1

‖zer‖22 + e′rG
′
mGmer

<

nw∑
r=1

ξ[0]′P [0]ξ[0] + e′rG
′
mGmer

= tr
(

(Lm +Hm)′P [0](Lm +Hm) +G′mGm

)
(3.164)

where the inequality comes from the guaranteed cost of Theorem 3.9 and the last equality is obtained from

ξ[0] = (Lm +Hm)er. The proof is concluded. �

Notice that, for a given set of candidate limit cycles Xs associated to c ∈ Cs(κ) ⊆ C(κ), the optimization problem

(3.162) in Corollary 3.4 represents the solution of a certain number of convex subproblems that does not exceed

Nκ, the number of elements of C(κ). Making the optimization with respect to c ∈ Cs(κ), we obtain the optimal

limit cycle X ∗e ∈ Xs, which minimizes the H2 guaranteed cost. Moreover, it is not difficult to conclude from its

proof that for a periodic switching function the guaranteed and actual costs coincide, as already discussed just

after Theorem 3.9. The following example illustrates these points.

Example 3.9. Consider a discrete-time switched affine system (3.140) with N = 2 subsystems defined by
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the matrices

A1 =

[
0.8 0

−1 −1.6

]
, A2 =

[
1.2 −0.5

−0.2 −0.1

]
, b1 =

[
0.2

1.2

]
, b2 =

[
0.2

0.1

]
(3.165)

H1 = H2 = [−4 2]′, E1 = E2 = I and G1 = G2 = 0, defining two unstable subsystems which present no
stable convex combination between them, i.e., there is no λ ∈ Λ such that Aλ is Schur stable. The goal is to
globally asymptotically stabilize the state trajectories to some limit cyle as close as possible to x∗ = [1.5 0]′,
in terms of its mean value. Moreover, the switching function design must minimize an upper bound for the
H2 performance index (3.145). To do so, for several values of κ ∈ {2, · · · , 10} we built sets of candidate
limit cycles Xs as in (3.150) with Γ = (2/3)I. Afterward, the candidate associated with the least upper
bound J̄2, given in (3.163), was selected by solving the optimization problem presented in Corollary 3.4
and the actual J2 performance index was obtained by means of numerical simulation. The obtained results
are given in Table 3.4.

Table 3.4: Number of candidate limit cycles, upper bound J̄2 and actual cost J2 for several κ.

κ 2 3 4 5 6 7 8 9 10
|Xs| 3 4 7 6 24 22 47 76 108
J̄2 infeas. 109.3246 infeas. infeas. 109.3246 75.1449 235.2343 84.3215 92.9873
J2 infeas. 73.2469 infeas. infeas. 73.2469 61.6781 119.4387 79.9657 62.4098

Considering values of κ for which feasible solutions were encountered, the actual costs J2 obtained
from the switching function σ[n] = u(ξ[n], n) were always smaller than their upper bounds J̄2 assured by
Corollary 3.4. Hence, we can conclude that the proposed state-dependent switching function is very efficient
and a better option when compared to the periodic one.

Regarding this last example, a short remark is in order. For κ = 10, note that the full set of limit cycles

X presents Nκ = 1024 elements. However, the adequate restriction of candidates provided by equation (3.150)

reduced the number of convex optimization problems to be solved to 108. This shows that even though an

exponential growth of complexity is expected with respect to κ, the designer can tune this constraint to avoid a

large number of candidates and, consequently, convex optimization problems to solve.

3.3.5 H∞ Performance

Turning our attention to the H∞ control design, let us consider again system (3.143) but defined for n ∈ N, with

external input w ∈ L d
2 and ξ[0] = 0. Defining Ξi[n] = H ′iP [n+ 1]Hi +G′iGi − ρI, the matrix

Ri[n] =

A′iP [n+ 1]Hi + E′iGi

`i[n]′P [n+ 1]Hi

Ξi[n+ 1]−1

A′iP [n+ 1]Hi + E′iGi

`i[n]′P [n+ 1]Hi

′ (3.166)

will be very useful to obtain the conditions for the H∞ control design as it will be clear in the next corollary.

Corollary 3.5. Consider system (3.140) defined for n ∈ N with w ∈ L d
2 , evolving from x[0] = xe[0]. Let the

scalar κ ∈ N+ and the set of candidate limit cycles Xe(c) ∈ Xs, ∀c ∈ Cs(κ) be given. If there exist matrices
P [n] > 0, a scalar ρ > 0, solution to the optimization problem

min
Xe(c)∈Xs

inf
P [n],ρ

ρ s.t. (3.167)
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
P [n] • • •

0 ρI • •
P [n+ 1]Ac[n] P [n+ 1]Hc[n] P [n+ 1] •

Ec[n] Gc[n] 0 I

 > 0 (3.168)

H ′iP [n+ 1]Hi +G′iGi − ρI < 0, i ∈ K (3.169)

for all n ∈ {0, · · · , κ− 1}, c ∈ Cs(κ) with P [κ] = P [0], then the switching function σ[n] = u(ξ[n], n) with

u(ξ, n) = arg min
i∈K

[
ξ

1

]′
(Li[k(n)]−Ri[k(n)])

[
ξ

1

]
+ ξ′E′iEiξ (3.170)

assures that the limit cycle X ∗e = Xe(c), solution to (3.167), is globally asymptotically stable and verifies the
inequality J∞ < ρ.

Proof: Consider system (3.140) written alternatively as (3.143) with ξ[0] = 0, denote ξ[n] = ξ, σ[n] = σ and

w[n] = w, and define

Fi[n] =


A′iP [n+ 1]Ai − P [n] + E′iEi • •

`i[n]′P [n+ 1]Ai `i[n]′P [n+ 1]`i[n] •

H ′iP [n+ 1]Ai +G′iEi H ′iP [n+ 1]`i[n] Ξi[n]


as well as the augmented variable ξ̃ = [ξ′ 1 w′]′. Adopting the Lyapunov function (3.146), within the time

interval n ∈ {0, · · · , κ− 1} we have the following developments

∆v(ξ, n) = ξ̃′Fσ[n]ξ̃ − z′eze + ρw′w

≤ min
i∈K

ξ
1

′ (Li[n]−Ri[n])

ξ
1

+ ξ′Qiξ − z′eze + ρw′w

≤

ξ
1

′ (Lc[n][n]−Rc[n][n])

ξ
1

+ ξ′Qc[n]ξ − z′eze + ρw′w

= ξ′
(
A′c[n]P [n+ 1]Ac[n] − P [n] +Qc[n] − Tc[n][n]Ξc[n][n]−1Tc[n][n]′

)
ξ − z′eze + ρw′w

< −z′eze + ρw′w (3.171)

with Ti[n] = A′iP [n + 1]Hi + E′iGi and Qi = E′iEi. The first inequality comes from the fact that function

hi(ξ, w) = ξ̃′Fi[n]ξ̃ is concave with respect to w for all i ∈ K due to (3.169). Hence, it is possible to determine

supw∈L d
2
hσ(ξ, w) which occurs for

w∗ = −Ξσ[n]−1(T ′σ[n]ξ +H ′σP [n+ 1]`σ[n]) (3.172)

This value, together with the switching function provided in (3.170), results in the expression of the right-hand

side of the first inequality. The second inequality is a consequence of the minimum operator, the second equality

is due to `c[n][n] = 0, since the sequence c ∈ Cs(κ) is associated with the limit cycle Xe(c) ∈ Xs. Finally,

the last inequality comes from the validity of (3.168). The periodic continuation P [n] = P [k(n)] assures that
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∆v(ξ, n) < −z′eze + ρw′w for all n ∈ N. Summing both sides of this inequality from n = 0 up to infinity, and

recalling that v(ξ[0], 0) = 0 since ξ[0] = 0 and limn→∞ v(ξ[n], n) = 0 as a consequence of the asymptotic stability

of the origin ξ = 0, we obtain

‖ze‖22 − ρ‖w‖22 < 0 (3.173)

which assures the validity of the H∞ guaranteed cost, concluding thus the proof. �

This corollary generalizes results from Theorem 3.9 to deal with H∞ performance optimization during the

switching function design. An interesting remark at this point is that, considering one of the criteria (3.150) or

(3.151), whenever Xs is non-empty it has at least κ candidate limit cycles, which are shifted versions of each

other. In fact, as an example, the sequences c ∈ {(1, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2), (1, 1, 2, 2)} provide the same

limit cycle but with different initial points xe[0]. Therefore, if one of them is inside Cs(κ) the others are as

well. Whenever this scenario takes place in the H2 control design, the optimization with respect to Xe(c) ∈ Xs

consists in determining the best initial value xe[0] such that the guaranteed cost is minimized. On the other

hand, the H∞ design procedure produces the same optimal upper bound ρ for all the shifted versions since the

optimization problem (3.167) in Corollary 3.5 is independent of xe[0].

The next subsection presents examples illustrating both H2 and H∞ control design in a power electronics

application.

3.3.6 Application for DC-DC Conversion

This application example was borrowed from the recent reference Benmiloud et al. (2019), which also treats the

asymptotic stability of a limit cycle, but in the continuous-time domain and guaranteeing only local stability.

It considers a multicellular DC-DC converter feeding an inductive load as depicted in Figure 3.19, which is

composed of a series association of elementary commutation cells, each one consisting of a pair of complementary

switches (i.e., when s1 is open s4 is closed). The system parameters are Vdc = 60 V, C1 = C2 = 40 µF, L = 5 mH,

and R = 20 Ω. This topology presents N = 8 operation modes (or subsystems) from which a switching signal

σ(t) selects one of them as active at each instant of time. This system can be modeled as the continuous-time

switched affine system  ẋ(t) = Acσ(t)x(t) + bcσ(t) +Hcσ(t)w(t)

zc(t) = Ecσ(t)x(t) +Gcσ(t)w(t)
(3.174)

−
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Vdc
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Figure 3.19: Schematic of a three-cell converter.
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Table 3.5: Values u1, u2, and u3 for each operation mode i

i 1 2 3 4 5 6 7 8
u1 0 1 0 1 0 1 0 1
u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 1 1 1 1

where the state is defined as x(t) = [v1(t) v2(t) io(t)]
′, the exogenous input w(t) represents a disturbance and

σ(t) must be governed by a switching function to be designed. The system matrices are

Aci =


0 0 u2−u1

C1

0 0 u3−u2

C2

u1−u2

L
u2−u3

L
−R
L

 , bci =


0

0

Vdcu3

L

 , (3.175)

Eci = diag([1 1 1]) and Gci = [0 0 0]′, i ∈ K. The matrices Hci ∈ R3, ∀i ∈ K, will be defined afterward, for

each control design case. The values for u1, u2, and u3 are given in Table 3.5 as a function of the current value

of the switching signal σ(t) = i. In order to treat this problem in the discrete-time domain, assuring an upper

bound for the switching frequency, a sampling period T = 0.1 ms is taken into account, such that the switching

signal must respect σ(t) = σ(tn) for all t ∈ [tn, tn+1) where tn = nT is the n-th sampling instant. Denoting

x(tn) = x[n], ∀n ∈ N, let us consider the norm-equivalent discretization procedure, presented in Subsection 2.2.3

which provides a controlled output z[n] that satisfies

‖z‖22 = ‖zc‖22 =

∫ ∞
0

zc(t)
′zc(t)dt (3.176)

indicating that L d
2 -norms of the controlled outputs zc(t) and z[n] are identical. With this procedure, we can

obtain the discrete-time switched affine system (3.140) with matricesAi [bi Hi]

0 I

 = eAiT ,

E′i
G′i

E′i
G′i

′ =

∫ T

0

eA ′i tE ′i Eie
Aitdt (3.177)

and

Ai =

Aci [bci Hci]

0 0

 , Ei = [Eci Gci]

for all i ∈ K, where it is assumed that the external input w(t) = w(tn), ∀t ∈ [tn, tn+1), is piecewise constant,

which can be a good approximation for a low-frequency disturbance w(t).

Hence, concerning the discretized system, our goal is to design a limit cycle X ∗e and a switching function

σ[n] = u(ξ[n], n) able to govern the state trajectories x[n] from any initial condition towards X ∗e , assuring H2 or

H∞ performance indexes. In contrast with the local stability results of Benmiloud et al. (2019), the proposed

methodology assures global asymptotic stability of X ∗e .

Before proceeding to the control design, the set of candidate limit cycles has to be determined. The limit

cycle X ∗e must be chosen to keep a suitable maximum distance to the reference point x∗ = [Vdc/3 2Vdc/3 Iref ],

with a free Iref ∈ [0, Imax], where Imax = Vdc/R is the maximum possible current at the output of the converter.
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Notice that x∗ is not an equilibrium point of any subsystem and its asymptotic stability is impossible in the

discrete-time domain. Our goal is accomplished by taking κ = 6 and adopting (3.151) with Γ = diag{0.5, 0.5, 0}

in order to construct the set of candidate limit cycles Xs. Using these parameters, we have obtained 30 candidates

from which the one providing the best transient response is chosen. The given Γ imposes that the voltages v1 and

v2 must not deviate more than 2 V from the references specified in x∗ during the steady state. For organization

purposes, the H2 and H∞ control design are presented separately in the following examples.

Example 3.10. (H2 case) Our interest is to design a switching function σ[n] = u(ξ[n], n) to optimize the
transient response of the discretized system, starting from a null initial condition x[0] = 0, which represents
the system start-up. Considering that in the H2 case, the external input is not piecewise constant, but of
impulsive type, matrices Hi, ∀i ∈ K, are determined differently from those provided in the norm-equivalent
discretization procedure. Indeed, for w[n] = δ[n+ 1], x[−1] = xe[−1] and choosing σ[−1] = c[κ− 1] = m,
the discrete-time matrices are given by Hi = −xe[0], ∀i ∈ K, which lead to x[0] = 0. Under these conditions,
solving the optimization problem of Corollary 3.4 we have obtained an H2 guaranteed cost of J̄2 = 37.7903

associated to the sequence c = (5, 1, 3, 1, 2, 1) and the limit cycle X ∗e defined by the fundamental period

(xe[0], · · · , xe[5])=


19.5989

39.4582

0.4031

 ,
19.5989

40.7315

0.5983

 ,
19.5989

40.7315

0.4011

 ,
20.8722

39.4582

0.5961

 ,
20.8722

39.4582

0.3996

 ,
19.5989

39.4582

0.6014


 (3.178)
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Figure 3.20: State trajectories for H2 control design.

Implementing the switching function σ[n] = u(ξ[n], n), given in (3.158), Figure 3.20 presents the
state trajectories and Figure 3.21 shows the corresponding switching signal obtained by the discrete-time
simulation. A phase portrait of the system trajectories toward the limit cycle is given in Figure 3.22 and
a zoom on the limit cycle under the steady-state operation is presented in Figure 3.23, where the arrow
represents the direction of the state trajectory. Evaluating numerically the H2 performance index (3.144)
we have obtained J2 = 1.7632, which shows the efficiency of the designed switching function, since by
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adopting the periodic switching function σ[n] = c[k(n)] the value J2 = 37.7903 is obtained.
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Figure 3.21: Obtained switching signal for H2 control design.
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Figure 3.22: State trajectories converging to the limit cycle X ∗e .
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Figure 3.23: Zoom showing the limit cycle X ∗e in steady-state.

Example 3.11. (H∞ case) Now our goal is to design a switching function σ[n] = u(ξ[n], n) but to attenuate
the influence of an exogenous input representing a voltage oscillation and a voltage dip of the input source
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Vdc. Voltage dips (or voltage sags) are recurrent events that depreciate power quality and may generate
failures in sensitive loads such as medical equipment, factory automations, among others, see Dargahi et al.
(2012). Considering now the continuous-time matrices Hci = [0 0 u3/L]′, ∀i ∈ K, which model w(t) as a
deviation of the input voltage around the considered Vdc. Taking into account the discretized system, a
limit cycle X ∗e ∈ Xs must now be chosen to minimize ρ. Solving the optimization problem of Corollary 3.5,
we have assured an H∞ guaranteed cost of ρ = 0.3633× 10−3 associated to the sequence c = (3, 1, 2, 1, 5, 1)

and the correspondent optimal limit cycle X ∗e , which is the same of the H2 case but shifted by 2.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure 3.24: Discrete-time state ξ[n] for H∞ control design.

Figure 3.25: State trajectories for H∞ control design.

Implementing the switching function σ[n] = u(ξ[n], n) with u(ξ[n], n) given in (3.170), starting the system
from x[0] = [19.5989 40.7315 0.4011]′ = xe[0] and considering the following exogenous input

w[n] =


10 sin(120πTn), n ∈ [0.1/T, 0.2/T )

−20, n ∈ [0.3/T, 0.4/T )

0, otherwise
(3.179)

we have obtained a discrete-time state trajectories ξ[n] and x[n] depicted in Figures 3.24 and 3.25,
respectively. Moreover, the RMS value of the output current io[n] has been calculated over three different
intervals, namely voltage oscillation n ∈ [0.1/T, 0.2/T ), voltage dip n ∈ [0.3/T, 0.4/T ) and regular operation
n ∈ [0, 0.1/T ) providing 0.5161 A, 0.4231 A and 0.5096 A, respectively. This demonstrates that the designed
switching function was successful in reducing the influence of the disturbance w[n] on the system behavior,
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guaranteeing an RMS deviation of approximately 17% during a voltage dip of 33%, compared to the regular
operation.

3.4 Concluding Remarks

The results in this chapter treat the control of discrete-time switched affine systems where state and output-

dependent switching functions are designed to govern system trajectories toward a desired reference. Two globally

stabilizing approaches are presented, being the first one based on practical stability and the second one, on

asymptotic stability of a desired limit cycle. More precisely, we have presented studies on the existence of a set

of attraction X containing the desired point xe and whose volume is minimized in the design step. At the first

moment, LMI conditions based on a general quadratic Lyapunov function (3.6) are presented and ellipsoidal sets

of attraction are considered. These conditions are generalized to cope with output-dependent switching, where a

full-order switched filter is proposed to orchestrate the switching function. This generalization is shown to be

capable of equally assure the existence of any set of attraction X obtained for the state feedback case, whenever

matrix pairs (Ai, Ci), i ∈ K are quadratically detectable. Later, departing from a min-type Lyapunov function,

novel practical stability conditions are presented based on the Lyapunov-Metzler inequalities and guaranteeing

the existence of a nonconvex set of attraction X . This is the first time that these inequalities are used in the

context of switched affine systems and are less restrictive in terms of assuring the existence of X .

Another approach, based on asymptotic stability of limit cycles, is introduced afterward. In this case,

performance optimization in the steady and transient states could be considered. More specifically, we have

developed the design procedure of switching functions for this class of systems in two sequential steps. First,

we have obtained a set of candidate limit cycles Xe(c) ∈ Xs based on some criteria specified by the designer,

which involve aspects such as their periods, oscillation amplitudes and mean values. As a second step, we have

determined a state and time-dependent switching function in order to assure global asymptotic stability of the

“best” limit cycle X ∗e ∈ Xs, that is, the one correspondent to the least H2 or H∞ guaranteed cost, provided in

Corollary 3.4 or 3.5, respectively.
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Chapter 4

Switched Nonlinear Systems

“Você me pergunta aonde que eu quero chegar / Se há tantos caminhos na vida e pouca
esperança no ar.”

— Raul Seixas, Caminhos (1975)

Studies regarding switched systems presenting some particular nonlinearities within their subsystem models

are discussed in this chapter. The motivation is twofold, relying on applications to switching power

electronic circuits and theoretical challenges of dealing with such nonlinear systems without using averaged

models.

Practical interest follows from the fact that switched control strategies for alternating current (AC) systems

seem to have received less investigation from the scientific community when compared to direct current (DC)

power systems. Indeed, the time-varying nature of AC currents requires a class of parameter-dependent switched

systems to precisely model these devices and allow switched control theory to be employed. As instances of

currently existing research works in switched control of DC-AC conversion, state-dependent switching rules to

command the switches of a three-phase inverter feeding a squirrel-cage induction motor in Scharlau et al. (2013)

and a PMSM in Delpoux et al. (2014) are proposed to regulate the shaft rotational velocity using approaches

based on auxiliary reference frames. Dealing with DC-AC power converter, reference Sanchez et al. (2019b)

has proposed a switched control law based on the hybrid dynamic system theory, where the main goal is to

track a sinusoidal reference trajectory assuring a minimum dwell time and guaranteeing practical stability. For

AC-DC power converters there are only few results using techniques based on the switched control theory. See

for instance the recent reference Hadjeras et al. (2019), where a hybrid control law is proposed for a three-level

Neutral Point Clamped (NPC) converter, working as a rectifier to regulate the output DC voltage.

The common nonlinear phenomenon studied throughout this chapter is a periodic dependency on an

angular parameter θ(t) whose variation rate, which can be regarded as an angular velocity, can be arbitrary or

given as some function of the state variable. This is certainly a hindrance to employing results presented in the

last chapters for designing switching functions. For this reason, specific Lyapunov functions will be employed,

allowing an efficient stability analysis with a suitable system response and based on less conservative stability

conditions. The problem of trajectory tracking will naturally arise and will be adequately explored.

First, a motivational case is presented where some properties of a parameter-dependent Lyapunov function

are discussed. Afterward, two application cases will be studied and appropriate tools to assess the asymptotic

stability of both cases will be developed. Namely, these cases consist of controlling the switches in three-phase

converters to, firstly, control the velocity of a permanent magnet synchronous machine and, subsequently, achieve

AC-DC conversion under unitary power factor operation.
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4.1 Parameter-dependent Lyapunov Function

A parameter-dependent Lyapunov function can be regarded as a special class of time-varying ones given,

for example, as

v(x(t), θ(t)) = x(t)′P (θ(t))x(t) (4.1)

where x : R0+ → Rnx is the state variable, θ : R0+ → R is a time-varying angular parameter and

P : R→ Rnx×nx is a parameter-dependent positive definite matrix which is periodic with respect to θ(t), that is,

we have P (θ + 2πk) = P (θ) for all θ ∈ R and k ∈ Z. Notice that v(·) is convex and radially unbounded with

respect to the state x and might be non-convex with respect to θ. Moreover, from Lemma A.1, it clearly admits

parameter independent lower and upper bounds vlb(x) = minθ,i γi(P (θ))‖x‖2 and vub(x) = maxθ,i γi(P (θ))‖x‖2,

respectively.

A Lyapunov function candidate given as (4.1) can be used, for example, to study the stability of the origin

for a dynamic system given as

ẋ(t) = A(θ(t))x(t), x(0) = x0 (4.2)

where θ(t) and the matrix function A : R → Rnx×nx are well defined. A periodic behavior is also considered

for A(θ(t)) with the same period 2π, making the Lyapunov function (4.1) well adapted to this system. Indeed,

evaluating its time-derivative along arbitrary trajectories x(t) and θ(t), yields

v̇(x(t), θ(t)) = x(t)′
(
A(θ(t))′P (θ(t)) + P (θ(t))A(θ(t)) + Ṗ (θ(t))

)
x(t) (4.3)

Notice the presence of the time derivative of P (θ) in the Lyapunov function derivative. A particular case that

will serve as motivation for the following sections is presented in the next example.

Example 4.1. Consider a continuous-time system of the form (4.2) defined by a matrix

A(θ(t)) = R(θ(t))′
(
FR(θ(t))− Ṙ(θ(t))

)
(4.4)

with θ̇(t) = ω = 5 rad/s, θ(0) = 0 and

F =

[
0 1

−10 −7

]
, R(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, Ṙ(θ) = ω

[
− sin(θ) − cos(θ)

cos(θ) − sin(θ)

]
(4.5)

Notice that F is a Hurwitz stable matrix and that R(θ)R(θ)′ = I. Adopt the Lyapunov function (4.1) with
P (θ) = R(θ)′WR(θ) and W > 0 satisfying F ′W +WF < 0. Evaluating (4.3), yields

v̇(x, θ) = x′
(
A(θ)′P (θ) + P (θ)A(θ) + Ṗ (θ)

)
x

= x′
(

He
((
R(θ)′F ′ − Ṙ(θ)′

)
R(θ)R(θ)′WR(θ) + Ṙ(θ)′WR(θ)

))
x

= x′
(
R(θ)′(F ′W +WF )R(θ)

)
x

< 0 (4.6)
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characterizing global asymptotic stability of the origin x = 0. Indeed, simulating the system state evolution
departing from x0 = [0.6 − 0.6]′, we obtain the phase portrait in Figure 4.1, where some level sets
Vt = {y ∈ R2 : v(y, θ(t)) = x(t)′P (θ(t))x(t)} of the Lyapunov function are depicted for

W =

[
2.5643 0.0500

0.0500 0.2214

]
(4.7)

Figure 4.2 displays a three-dimensional representation of this phase portrait taking into account the time
as one of the axis.
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Figure 4.1: Phase portrait of a trajectory x(t) along with some level sets Vt.

Figure 4.2: Level sets of the Lyapunov function evaluated along the trajectory x(t) (in blue).

This example showed how a parameter-dependent Lyapunov function can capture key features of a

dynamic system presenting dependency on the same parameter, easing its analysis and, as will be clear afterward,
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control design. The Lyapunov function considered has a parameter-dependent matrix P (θ) whose eigenvalues

do not depend on θ. This function possesses ellipsoid-shaped level sets that rotate with respect to θ and are

periodic with period 2π. Even though a linear dependency with time was taken into account, notice that the

reasoning within Example 4.1 can be employed to guarantee stability for an arbitrary trajectory θ(t).

As shown in Figure 4.1, the level set areas are decreasing over time but the system trajectory might leave

the current level set in a subsequent instant of time, given the rotative nature of the system. The rotation causes

non-convexity of v(x, θ) with respect to θ and, consequently, time. However, global asymptotic convergence is

still assured because of the guaranteed contraction of the level sets Vt, which was illustrated by means of Figure

4.2. In the next sections, two dynamical systems that model power electronic devices are presented and the

adoption of parameter-dependent Lyapunov functions will be of main importance to obtain efficient methods for

switching control design.

4.2 Permanent Magnet Synchronous Machines

A permanent magnet synchronous machine (PMSM) is an electrical drive characterized by the presence

of permanent magnets in the rotor (not requiring magnetizing currents) and a set of windings in the stator. It

presents a high torque density, low torque ripple, high efficiency and a wide range of velocities. These features

make PMSMs desirable in several high-performance applications such as electrical and hybrid vehicles Yang

et al. (2015), autonomous water-pumping stations Antonello et al. (2017), aerospace applications Kefalas and

Kladas (2014), among others. References on modeling and classical control approaches for these machines are

available in Krishnan (2009) and Krause et al. (2013).

Generally, PMSMs are fed by a voltage source inverter (VSI) whose switches are operated to command

desired voltages to each machine terminal, as it is schematized in Figure 4.3. A standard approach to control

these switches, known as field-oriented control (FOC), consists in modeling the machine in terms of an auxiliary

rotating reference frame in which the currents are regulated by means of PID controllers together with feedback

linearization techniques. Another recurrent approach in the literature is the direct-torque control (DTC) which,

in general, controls the machine torque by adopting switching tables that depend on the estimated magnetic

flux and torque signals. Nevertheless, both methods require reference frame transformations (e.g., Park and

Clarke transformations) and a second slower feedback loop that provides the reference current or torque to the

inner loop. This additional controller stabilizes the machine shaft velocity or its position to a desired reference.

A detailed comparison of these schemes can be found in Casadei et al. (2002). To the best of my knowledge,

the literature to date does not present results regarding the control of a PMSM in the framework of switched

systems, where a switching function is designed to decide continuously the state (open or closed) of the VSI

switches, without using auxiliary reference frames. This approach enables the control of the PMSM in a single

loop, bringing the rotor velocity to a desired value in a simpler manner.

Consider the three-phase permanent magnet synchronous machine with one pair of poles fed by a three-

phase inverter with switches {s1, · · · , s6} and a DC source Vdc depicted in Figure 4.3. The dynamic model of



CHAPTER 4. SWITCHED NONLINEAR SYSTEMS 115

this assembly is described by the following coupled nonlinear differential equations

L
dia(t)

dt
+Ria(t) = νa(t)− µω(t)fa(θ(t)) (4.8)

L
dib(t)

dt
+Rib(t) = νb(t)− µω(t)fb(θ(t)) (4.9)

L
dic(t)

dt
+Ric(t) = νc(t)− µω(t)fc(θ(t)) (4.10)

together with

J
dω(t)

dt
+ cω(t) = µia(t)fa(θ(t)) + µib(t)fb(θ(t)) + µic(t)fc(θ(t))− τ (4.11)

dθ(t)

dt
= ω(t) (4.12)

where ia(t), ib(t) and ic(t) are phase currents satisfying ia(t) + ib(t) + ic(t) = 0 for all t ∈ R0+, νa(t), νb(t)

and νc(t) are phase to neutral voltages, R and L are the resistance and the equivalent inductance per phase,

respectively, J is the rotor moment of inertia, µ is the peak value of the mutual flux linkage, c is the viscous

friction coefficient and τ is the external constant torque. The time-varying parameter θ(t) is the shaft angular

displacement and ω(t) is its angular velocity. The auxiliary periodic functions fa(θ), fb(θ) and fc(θ) are related

to the shape of the back electromotive force (emf) and are defined as

fa(θ) = sin(θ) (4.13)

fb(θ) = sin(θ − 2π/3) (4.14)

fc(θ) = sin(θ − 4π/3) (4.15)

An important remark is that the assumption of a single pole pair is done without loss of generality. For a machine

with np pole pairs, a variable θe = npθ can be defined to express the electrical angle on which f(·) should depend

in equations (4.8)-(4.11), leading to similar developments. The voltages νa(t), νb(t) and νc(t) depend exclusively

on the state (open or closed) assigned to the switches {s1, · · · , s6}, at each instant of time. More specifically,

si is 1 when the switch is closed and 0 when it is open. The control of these switches is the only manner of

actuating in the system to make the angular velocity ω(t) asymptotically convergent toward a pre-specified

profile ω∗(t) chosen by the designer. Each pair of switches (s1, s4), (s2, s5), (s3, s6) is alternately commanded,

for instance, s1 is closed whenever s4 is open, and vice-versa. Thus, there exist eight possible configurations

for the switches, defining seven combinations for the triple νa(t), νb(t) and νc(t) that are represented by the

−
+

Vdc

s4

s1

s5

s2

s6

s3
ia

ib

ic

PMSM

J
θ

Figure 4.3: PMSM and inverter schematic.
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σ s1 s2 s3 νa νb νc

1 0 0 1 −Vdc/3 −Vdc/3 2Vdc/3
2 0 1 0 −Vdc/3 2Vdc/3 −Vdc/3
3 0 1 1 −2Vdc/3 Vdc/3 Vdc/3
4 1 0 0 2Vdc/3 −Vdc/3 −Vdc/3
5 1 0 1 Vdc/3 −2Vdc/3 Vdc/3
6 1 1 0 Vdc/3 Vdc/3 −2Vdc/3

7 1 1 1 0 0 00 0 0

Table 4.1: Modes σ, switches state and phase voltages.

switching signal σ : R0+ → K = {1, · · · , 7}, as detailed in Table 4.1. This allows us to describe (4.8)-(4.12) by

the following state-space representation

ẋ(t) = A(θ(t))x(t) + bσ(t), x(0) = x0 (4.16)

θ̇(t) = ω(t), θ(0) = θ0 (4.17)

where x(t) = [iφ(t)′ ω(t)]′ : R0+ → R4 is the state variable with iφ(t) = [ia(t) ib(t) ic(t)]
′ and the matrices

(A(θ), bσ) are given by

A(θ) =

 −(R/L)I −(µ/L)f(θ)

(µ/J)f(θ)′ −(c/J)

 , bσ =

(1/L)νσ

−(τ/J)

 (4.18)

where the vector valued function is f(θ) = [fa(θ) fb(θ) fc(θ)]
′ : R → R3, and the voltage function νσ(t) =

[νa(t) νb(t) νc(t)]
′ : R0+ → R3 takes the values shown in Table 4.1, for different modes σ(t) ∈ K, ∀t ∈ R0+.

The main goal of this section is to design a state-dependent switching function u : R4 × R→ K such that

the switching control σ(t) = u(x(t), θ(t)) guarantees asymptotic tracking to a given rotational velocity profile

ω∗(t), ∀t ∈ R0+, that is

lim
t→∞

ω(t) = ω∗(t) (4.19)

Ideally, the switching function should be designed from the solution to the optimal control problem

min
σ

∫ ∞
0

(
‖(iφ(t)− i∗φ(t))‖2 + d(ω(t)− ω∗(t))2

)
dt (4.20)

where d ∈ R+ is a parameter used by the designer to define an appropriate tradeoff between the two parts of the

total cost and i∗φ(t) is the phase current reference vector, to be determined as a function of ω∗(t). However, as it

has been already discussed in the literature, see for instance Deaecto et al. (2010), this problem is extremely

difficult to solve due to the nonlinear nature of the switching control and, therefore, a suboptimal solution is

obtained by minimizing a suitable upper bound of (4.20). Actually, we are particularly interested in assuring

the asymptotic convergence of the rotor velocity ω(t) to the desired profile expressed by ω∗(t) and, therefore,

the correspondent phase current vector i∗φ(t) is obtained accordingly from the knowledge of θ(t), ω∗(t) and ω̇∗(t)

as will be clear in the sequel.
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4.2.1 Mathematical Properties of Function f(θ)

The vector valued function f : R→ R3 can be rewritten as f(θ) = Gh(θ) with

G =


1 0

−1/2 −
√

3/2

−1/2
√

3/2,

 , h(θ) =

sin(θ)

cos(θ)

 (4.21)

where the matrix G ∈ R3×2 coincides with the inverse Clarke transformation, see Duesterhoeft et al. (1951).

Using (4.21) and the fact that G′G = (3/2)I, simple algebraic manipulations show that for an arbitrary solution

θ(t) and ω(t) satisfying (4.17) for all t ∈ R0+, the relations

f(θ)′f(θ) =
3

2
, ḟ(θ, ω)′f(θ) = 0, ḟ(θ, ω)′ḟ(θ, ω) =

3

2
ω2 (4.22)

hold with ḟ(θ, ω) = ω(∂f/∂θ). Finally, for the vector e = [1 1 1]′ ∈ R3, along the same trajectories we also have

e′f(θ) = 0 and e′ḟ(θ, ω) = 0. This means that the images of functions f(θ) and ḟ(θ, ω) are contained in a plane

orthogonal to the vector e ∈ R3, formally defined as

Υ = {y ∈ R3 : y′e = 0} (4.23)

This plane is also known from the power electronics literature as the αβ plane. Therefore, we can conclude that

for every scalars a1, a2 ∈ R, the linear combination of f(θ) and ḟ(θ, ω) given by m(θ, ω) = a1f(θ) + a2ḟ(θ, ω)

always belongs to the circumference

Fω =

{
y ∈ R3 : e′y = 0, ‖y‖ =

√
3(a2

1 + a2
2ω

2)/2

}
(4.24)

For a given κ ∈ R+, the set F =
⋃
|ω|≤κ Fω represents an annulus in the Υ plane with inner and outer radii

defined by the boundary values of rotational velocity, whenever it varies in the interval −κ ≤ ω ≤ κ. The

maximal circumference with radius correspondent to |ω| = κ is denoted by Fκ.

4.2.2 Switching Function Design

Within this section, we present the main results regarding the design of a state-dependent switching function

capable of assuring asymptotic tracking and minimum guaranteed performance cost. More specifically, for a

given κ ∈ R+, which defines the velocity domain of interest

Ωκ = {ω ∈ R : |ω| ≤ κ} (4.25)

our main goal is to determine a set of attainable rotational velocity profiles ω∗(t) ∈ Ω∗, the associated harmonic

currents i∗φ(t) and a switching function σ(t) = u(x(t), θ(t)) responsible to orchestrate the state trajectories

asymptotically towards x∗(t) = [i∗φ(t)
′
ω∗(t)]′, assuring a minimum upper bound for the optimal cost (4.20).

Actually, given a set of initial conditions (x0, θ0) ∈ R4 × R and a pre-specified velocity profile ω∗(t) ∈ Ω∗, we

need to assure that the rotational velocity ω(t) does not leave the region (4.25), i.e., ω(t) ∈ Ωκ for all t ∈ R0+

and attains the desired profile ω∗(t) ∈ Ω∗, asymptotically. Moreover, associated with each ω∗(t) ∈ Ω∗ we must
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provide a current trajectory of the form i∗φ(t) = i∗(t)f(θ(t)), where i∗ : R0+ → R is a scalar valued function to

be determined.

To accomplish this goal, consider the auxiliary state variable ξ(t) = x(t) − x∗(t) and the following

non-quadratic, radially unbounded (with respect to ξ), Lyapunov function candidate

v(ξ, θ) = ξ′P (θ)ξ (4.26)

where the symmetric matrix valued function P : R→ R4×4 is of the form

P (θ) =

 pI •

rf(θ)′ q

 > 0, ∀θ ∈ R (4.27)

The real scalars (p, q, r) are design variables whose determination is linked to the switching function design, as in

the previous presented design methodologies. As will be clear in the sequel, this class of Lyapunov functions is

comprehensive enough to accomplish our proposals and can provide less conservative results when compared to

a quadratic one. We proceed by calculating its time derivative along an arbitrary solution (x(t), θ(t)), ∀t ∈ R0+

of the system under consideration (4.16)-(4.17). After some algebraic manipulations we obtain

v̇(ξ, θ) = −ξ′W (θ, ω)ξ + 2ξ′P (θ)hσ(θ, ω) (4.28)

which holds for all pairs (ξ, θ) ∈ R5 and where the symmetric matrix valued function W : R× R→ R4×4 and

the vector valued function hσ : R× R→ R4 are

W (θ, ω) =

 2(Rp/L)I − 2(µr/J)f(θ)f(θ)′ •

(Rr/L− µq/J + µp/L+ rc/J)f(θ)′ − rḟ(θ, ω)′ 3µr/L+ 2cq/J

 (4.29)

hσ(θ, ω) =

νσ/L− (Ri∗ + µω∗ + Ldi∗/dt)f(θ)/L− i∗ḟ(θ, ω)

(3i∗µ/2− cω∗ − τ − Jω̇∗)/J

 (4.30)

Notice that, to impose the trajectory tracking condition, we need to determine a switching control

σ(t) = u(x(t), θ(t)) assuring that v̇(ξ, θ) < 0 for all ξ 6= 0, θ ∈ R and ω(t) ∈ Ωκ for all t ∈ R0+. Although

nontrivial, a solution to this task will be equivalently expressed as an optimization problem described in terms

of LMIs and relying on key properties of the nonlinear function f(θ). The next theorem is of central importance

as it provides sufficient conditions for the existence of the switching function u(x, θ), which is a solution to the

previously stated control design problem.

Theorem 4.1. Consider the switched nonlinear system (4.16)-(4.17) with initial condition (x0, θ0). Choose the
diagonal matrix Q = diag(I, d) and the scalar κ ∈ R+ that defines the stability domain of interest Ωκ given in
(4.25). Let the current trajectory i∗φ(t) be defined with

i∗(t) =

(
2

3µ

)(
cω∗(t) + Jω̇∗(t) + τ

)
(4.31)

where ω∗(t) is a desired rotational velocity profile such that ω∗(t) ∈ Ω∗ with

Ω∗ =
{
ω(t) : ∆(ω(t))′

(
ψψ′ + κ2ϕϕ′

)
∆(ω(t)) ≤ V 2

dc, |ω(t)| ≤ κ, ∀t ∈ R0+

}
(4.32)
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whose indicated elements are

ψ =

(
2√
3µ

)[
Rc+ 3µ2/2 JR+ Lc JL R

]′
(4.33)

ϕ =

(
2√
3µ

)[
Lc JL 0 L

]′
(4.34)

∆(ω(t)) =
[
ω(t) ω̇(t) ω̈(t) τ

]′
(4.35)

If there exist scalars (p, q, r) such that P (θ) > 0 and W (θ, ω) > Q for all θ ∈ R and ω ∈ Ωκ, then the
state-dependent switching function σ(t) = u(x(t), θ(t)) with

u(x, θ) = arg min
j∈K

(
[pI rf(θ)](x− x∗)

)′
νj (4.36)

assures that x(t)→ x∗(t) asymptotically. Moreover, the upper bound

J =

∫ ∞
0

(
x(t)− x∗(t)

)′
Q
(
x(t)− x∗(t)

)
dt ≤ ξ′0P (θ0)ξ0 = J̄ (4.37)

for the performance cost (4.20) holds with ξ0 = x(0)− x∗(0).

Proof: In order to prove asymptotic tracking towards x∗(t), we need to show that for an arbitrary solution to

(4.16)-(4.17) we have v̇(ξ, θ) < 0 for all ξ 6= 0, θ ∈ R and ω ∈ Ωκ. First of all, notice that the choice of the

current i∗(t) indicated in (4.31) makes null the last element of the vector (4.30). Now, from the first row of

(4.30), let us define

m(θ, ω) =
(
Ri∗ + µω∗ + L

di∗

dt

)
f(θ) + Li∗ḟ(θ, ω) (4.38)

which, as it has been earlier discussed, is a vector valued function that has the image set Fω ⊂ Υ given by (4.24)

with a1 = Ri∗+µω∗+Ldi∗/dt and a2 = Li∗. On the other hand, from the values of the phase voltages provided

in Table 4.1, it is a matter of immediate verification that e′νj = 0 for all j ∈ K which means that all vectors

νj , j ∈ K, belong to the same Υ plane in R3 as m(θ, ω) does. The consequence of this important fact that

follows from the physical nature of the motor is that at each instant of time t ∈ R0+ the vector m(θ(t), ω(t))

can be alternatively written as a convex combination of the phase voltages νj , j ∈ K under certain conditions.

Indeed, for each θ ∈ R and ω ∈ Ωκ, there exists a λ∗ ∈ Λ such that

νλ∗ = m(θ, ω) (4.39)

if and only if

Fκ ⊆ P =

ν ∈ R3 : ν =
∑
j∈K

λjνj , λ ∈ Λ

 (4.40)

As illustrated in Figure 4.4, the circumference of radius Vdc/
√

2 is the one of maximum radius inscribed in the

polytope P. Thus, taking into account the definition of Fκ just after (4.24), the inclusion (4.40) holds if and only

if

ν′λ∗νλ∗ ≤ 3(a2
1 + a2

2κ
2)/2 ≤ V 2

dc/2 (4.41)

with a1 and a2 provided previously. Plugging the current i∗, given in (4.31), expressed as a function of (ω∗, ω̇∗)
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Figure 4.4: Graphical representation of polytope P and inscribed circumference.

in a1 and a2, a few algebraic manipulations lead to the fact that the second inequality in (4.41) holds whenever

the desired rotational velocity profile ω∗(t) is chosen inside the set Ω∗ defined in (4.32). Now taking into account

the existence of λ∗ ∈ Λ satisfying (4.39), the equality (4.28) together with the switching rule (4.36) yield

v̇(ξ, θ) = −ξ′W (θ, ω)ξ + min
j∈K

2ξ′P (θ)hj(θ, ω)

< −ξ′Qξ + min
λ∈Λ

2ξ′P (θ)hλ(θ, ω)

≤ −ξ′Qξ + 2ξ′P (θ)hλ∗(θ, ω)

= −ξ′Qξ ≤ 0 (4.42)

where the first inequality comes from the fact that W (θ, ω) > Q and the last equality holds from the fact that at

each instant of time t ∈ R0+ we are able to find λ∗ ∈ Λ such that νλ∗ satisfies (4.39), leading to hλ∗ = 0. Hence,

v̇(ξ, θ) < 0 for all ξ 6= 0, θ ∈ R and ω ∈ Ωκ implies that ξ(t)→ 0 asymptotically. Integrating both sides of (4.42)

from t = 0 to t→∞ we obtain the upper bound (4.37). The proof is concluded. �

This result provides a switching function that can be applied in the important context of trajectory

tracking and a set of feasible trajectories has been identified. To this end a bounded rotational velocity profile

with bounded first and second order time derivative must be provided. Moreover, an upper bound for the

associated cost is determined and, as it will be seen next, it can be minimized by an adequate choice of the

matrix function P (θ).

We turn our attention at this point to the determination of a set of initial conditions Ξ such that for a

given rotational velocity profile ω∗ ∈ Ω∗ any (ξ0, θ0) ∈ Ξ implies ω(t) ∈ Ωκ for all t ∈ R0+ and a given κ ∈ R+.

The next theorem presents a key result that, together with the one of Theorem 4.1, assures the tracking property

ω(t)→ ω∗(t) and ω(t) ∈ Ωκ for any choice of the velocity profile such that ω∗(t) ∈ Ω∗ for all t ∈ R0+.

Theorem 4.2. Let a rotational velocity profile ω∗ ∈ Ω∗, a scalar κ ∈ R+ and a triple (p, q, r) satisfying the
design conditions provided in Theorem 4.1 be given. Any solution for the system (4.16)-(4.17) evolving from
(ξ0, θ0) ∈ Ξ with

Ξ =
{

(ξ, θ) ∈ R4 × R : v(ξ, θ) ≤ v0

}
(4.43)

v0 =

(
q − 3r2

2p

)
min
ς∈R+

(
κ− |ω∗(ς)|

)2 (4.44)
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satisfies ω(t) ∈ Ωκ for all t ∈ R0+.

Proof: Before all, it is important to mention that from the application of the Schur Complement to (4.27) it is

verified that P (θ) > 0 for all θ ∈ R if and only if q > 3r2/(2p) > 0. First, considering t ∈ R0+ arbitrary and

(ξ(t), θ(t)) ∈ Ξ, we have

v0 ≥ v(ξ(t), θ(t))

≥ min
iφ(t)∈R3

v(ξ(t), θ(t))

=

(
q − 3r2

2p

)(
ω(t)− ω∗(t)

)2 (4.45)

which together with (4.44) yield

(
ω(t)− ω∗(t)

)2 ≤ min
ς∈R+

(
κ− |ω∗(ς)|

)2
≤
(
κ− |ω∗(t)|

)2 (4.46)

Taking into account that ω∗ ∈ Ω∗ implies |ω∗(t)| ≤ κ, inequality (4.46) imposes |ω(t)| ≤ κ as well, that is,

ω(t) ∈ Ωκ. From Theorem 4.1 it follows that dν(ξ(t), θ(t))/dt < 0 whenever ω(t) ∈ Ωκ and we have shown that

every (ξ, θ) ∈ Ξ is such that ω ∈ Ωκ. Since Ξ is a level set of the Lyapunov function, putting all these properties

together, we conclude that any trajectory starting in Ξ remains on this set for all t ∈ R+, concluding thus the

proof. �

It is important to provide an interpretation of the set Ξ, which is a level set of the Lyapunov function

defined by v0. Using the fact that

min
iφ(ς)∈R3,|ω(ς)|=κ

v(ξ(ς), θ(ς)) =

(
q − 3r2

2p

)(
κ− |ω∗(ς)|

)2 (4.47)

then it is readily verified that

v0 = min
ς∈R+

(
q − 3r2

2p

)(
κ− |ω∗(ς)|

)2
= min
ς∈R+

min
iφ(ς)∈R3,|ω(ς)|=κ

v(ξ(ς), θ(ς)) (4.48)

which indicates that v0 defines the largest level set of the Lyapunov function such that |ω(ς)| = κ for all ς ∈ R0+.

Hence, the set of all initial conditions (ξ0, θ0) such that the resulting trajectory respects ω(t) ∈ Ωκ for all t ≥ 0,

fulfilling the assumption for Theorem 4.1, is composed by all pairs (ξ0, θ0) ∈ Ξ.

The set Ω∗ has an especial structure and for this reason it can be replaced by a simpler, although more

conservative version

Ωc =

{
ω(t) : ‖∆(ω(t))‖2 ≤ V 2

dc

‖ψ‖2 + κ2‖ϕ‖2
, |ω(t)| ≤ κ, ∀t ∈ R0+

}
(4.49)

which imposes, as expected, a certain bound on the size of ∆(ω(t)) depending on the physical parameters of the

motor and the design parameter κ ∈ R+. The application of this result in each case of interest requires some

care as indicated in the sequel. Let us consider the following particular cases that are important in practice:
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• Case 1 : Sufficiently realistic in some situations, when the viscous friction coefficient and the external

torque can be neglected, that is, (c, τ) = (0, 0). This situation has been treated in Egidio et al. (2019),

considering ω∗(t) = ω∗ a constant rotational velocity. It can be noticed that the conditions provided by

Theorem 4.1 are considerably simplified, because ∆(ω) = ω, ψ =
√

3µ and ϕ = 0 are scalars, yielding

Ωc ≡ Ω∗ ≡ Ωκ provided that

κ = Vdc/(
√

3µ) (4.50)

• Case 2 : Parameters (c, |τ |) are positive and ω∗(t) = ω∗ is a constant rotational velocity. The parameter

τ represents the torque produced by Coulomb friction. The vector ∆(ω(t)) = [ω(t) τ ]′ allows us to consider

ψ and ϕ two vectors in R2 that follow from the elimination of the second and third elements of (4.33)-(4.34).

Taking into account that matrix ψ′ψ + κ2ϕϕ′ ≥ 0 and has only nonnegative elements, a necessary and

sufficient condition for the convex set Ω∗ be equal to Ωκ follows by imposing that κ

|τ |

′ (ψψ′ + κ2ϕϕ′
) κ

|τ |

 ≤ V 2
dc (4.51)

holds for some design parameter κ ∈ R+. It must be chosen as small as possible in order to take into

account the physical limitations on Vdc.

• Case 3 : This is the general case characterized by positive parameters (c, |τ |) but the goal now is to track

a piecewise linear rotational velocity profile ω∗(t). This yields ∆(ω(t)) = [ω ω̇ τ ]′ since ω̈∗(t) = 0 almost

everywhere. This is not an overwhelming restriction as, at nondifferentiable points of ω∗(t) this trajectory

can be adequately smoothed. This situation is of great practical appeal as it can attenuate required phase

currents in the transient state, reducing component wear. It will be illustrated by means of an experiment

in the next chapter.

Now, an essential point about Theorem 4.1 is how to obtain the parameters (p, q, r) that satisfy the

inequality W (θ, ω) > Q > 0 and P (θ) > 0 for all θ ∈ R and ω ∈ Ωκ. A computationally intensive approach

to this problem would be to exploit the periodicity of f(θ) by imposing these conditions on a sufficiently fine

discrete grid on the box defined by the intervals |θ| ≤ π and |ω| ≤ κ. However, a more efficient manner can be

adopted by using the result presented in the next lemma that follows from the properties of functions f(θ) and

ḟ(θ, ω) previously stated.

Lemma 4.1. Let the real parameters (α, β, ρ, η, ϑ) with β ∈ R0+ and κ ∈ R+ be given. The symmetric matrix
valued function S : R× R→ R4×4 defined by

S(θ, ω) =

[
αI − βf(θ)f(θ)′ •
ρf(θ)′ − ηḟ(θ, ω)′ ϑ

]
(4.52)

is positive definite for all θ ∈ R and ω ∈ Ωκ if and only if the following conditions

2α/3 > β, 2ϑ/3 >

(
η2

α

)
κ2 +

(
ρ2

α− 3β/2

)
(4.53)

hold simultaneously.
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Proof: Since by assumption β ≥ 0 then the first diagonal block of S(θ, ω) is positive definite if and only if αI •
√
βf(θ)′ 1

 > 0 (4.54)

and the Schur Complement with respect to the first diagonal element indicates that (4.54) holds if and only if

α > 0 and 1 > (β/α)f(θ)′f(θ) = 3β/(2α),∀θ ∈ R, which is exactly the first condition in (4.53). Using this fact,

the Schur Complement of (4.52) with respect to the first diagonal element indicates that W (θ, ω) > 0 if and only

if

ϑ > (ρf(θ)− ηḟ(θ, ω))′ (αI − βf(θ)f(θ)′)
−1

(ρf(θ)− ηḟ(θ, ω)) (4.55)

Using Lemma A.2, it follows that

(αI − βf(θ)f(θ)′)
−1

= (1/α)I + (β/α)

(
f(θ)f(θ)′

α− 3β/2

)
(4.56)

which, replaced into (4.55) and recalling the properties in (4.22), leads to

ϑ > 3ρ2/(2α) + 3η2ω2/(2α) + (β/α)

(
(3/2)2ρ2

α− 3β/2

)
= 3η2ω2/(2α) +

(
(3/2)ρ2

α− 3β/2

)
(4.57)

which must be verified for all ω ∈ Ωκ. This provides the second inequality in (4.53) after multiplying both sides

by the factor 2/3, concluding the proof. �

Since the vector valued function f(θ) is nonlinear, the result of Lemma 4.1 is somewhat surprising.

Moreover, it is interesting to notice that the conditions (4.53) can be equivalently rewritten by means of a single

LMI, making possible and simple the determination of the free parameters involved. Hence, this result can be

adopted to express the conditions of Theorem 4.1 in terms of LMIs as it is stated in the next corollary.

Corollary 4.1. Let the initial conditions (ξ0, θ0), the matrix Q > 0, and κ ∈ R+ be given. The parameters
(p, q, r) solution to the optimization problem

min
(p,q,r)∈R3

ξ′0P (θ0)ξ0 s.t. P (θ) > 0, W (θ, ω) > Q (4.58)

for all (θ, ω) ∈ R× Ωκ are equivalently determined from the following convex optimization problem

min
(p,q,r)∈R3

ξ′0P (θ0)ξ0 s.t. (4.59)

[
(2/3)q •
r p

]
> 0 (4.60)

 (2µ/L)r + (4c/(3J))q − 2d/3 • •
κr (2R/L)p− 1 •

(R/L+ c/J)r − (µ/J)q + (µ/L)p 0 (2R/L)p− (3µ/J)r − 1

 > 0 (4.61)
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Proof: First, notice that the conditions (4.53) can be expressed in terms of a linear matrix inequality of the form
2ϑ/3 • •

κη α •

ρ 0 α− 3β/2

 > 0 (4.62)

Now, making S(θ, ω) = P (θ), Lemma 4.1 assures that inequality (4.60) is equivalent to P (θ) > 0 for all θ ∈ R.

In the same manner, writing S(θ, ω) = W (θ, ω)−Q, Lemma 4.1 assures that inequality (4.61) is equivalent to

W (θ, ω)−Q > 0 for all θ ∈ R and ω ∈ Ωκ. �

An interesting remark at this point is the fact that problem (4.58) always admits a feasible solution

(p, q, r) with q = (J/L)p > 0, r small enough and p > 0 large enough. This puts in evidence the fact that the

present design conditions are always feasible and, consequently, valid. This result is very important in practical

applications, mainly related to control of electrical drives, see Krishnan (2009), Pillay and Krishnan (1989),

Matsui and Shigyo (1992), as some examples. A useful application, very common in control of electrical machines,

is to adopt a velocity reference of ramp type in order to smooth the transient response by reducing current

peaks. This aspect will be fully illustrated by the forthcoming experimental results. To conclude the theoretical

discussion in this section, some remarks about the computational complexity of the proposed methodology are

in order.

4.2.3 Computational Analysis

The proposed switching function (4.36) can be equivalently replaced by a more efficient one, in terms of required

computational effort. In fact, from (4.36) we have

u(x, θ) = arg min
j∈K

(
piφ + (rω − rω∗ − pi∗)f(θ)

)′
νj (4.63)

= arg min
j∈K

(
pGG#iφ + (rω − rω∗ − pi∗)Gh(θ)

)′
νj (4.64)

= arg min
j∈K

(
G#iφ + ((r/p)ω − (r/p)ω∗ − i∗)h(θ)

)′
G′νj (4.65)

where G# is given by

G# =
2

3

1 −1/2 −1/2

0 −
√

3/2
√

3/2

 (4.66)

and coincides with the Clarke transform, see Duesterhoeft et al. (1951). Despite the fact that GG# = I−(1/3)ee′

is not the identity matrix, we always have GG#iφ = iφ whenever ia + ib + ic = 0. This is a consequence of the

fact that GG# is symmetric and has one null eigenvalue associated to the vector e = [1 1 1]′ and two unitary

eigenvalues associated to linearly independent eigenvectors that are orthogonal to e, namely ζ1 and ζ2. Thus one

can always rewrite iφ as a linear combination of ζ1 and ζ2 which shows that GG# is an identity operator for iφ.

Notice that while (4.63) requires the evaluation of three sine functions and two dot products between

vectors in R3, expression (4.65) requires only one sine and one cosine (to evaluate h(θ)) along with two dot

products of vectors in R2, given that G′νj can be calculated a priori for all j ∈ K. Moreover, observing that

the expression inside the min-operator is linear with respect to νj , it always returns 0 for ν7 = 0 and opposite
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results for the pairs (ν1, ν6), (ν2, ν5) and (ν3, ν4), implying that this expression must be evaluated for only 3

instead of 7 subsystems. Finally, using the fact that ic = −ia− ib we can expand G#iφ = [ia (−
√

3/3)(ia + 2ib)]
′,

simplifying this matrix product to one multiplication and two additions. The division (r/p) and possible scaling

factors can also be computed offline.

The numerical validation of this approach will be tackled in the following subsection. Experimental results

will be carried out in Chapter 5, where two experiments are presented.

4.2.4 Simulation Results

Some simulations with data borrowed from the literature were made and the results are gathered in this section.

The next example illustrates the case where a constant output velocity must be reached.

Example 4.2. Let us consider a PMSM with system data presented in Zhang et al. (2013), given in our
notation as in Table 4.2.

Table 4.2: System data employed

Parameter Value Unit
R 3.5 Ω

L 11.5 mH
µ 0.321 V.s/rad
c 10−5 N.m.s/rad
τ 0 N.m
J 0.44 g.m2

Vdc 100 V
np 3 pole pairs

Adopting a κ = 314.1593 rad/s (or 3000 rpm), which defines the velocity domain of interest Ωκ as in (4.25),
and d = 0.01 that defines the quadratic cost J in (4.37) with Q = diag(I, d). Our goal is to bring the
rotational velocity to a constant value of ω∗ = 104.7197 rad/s (or 1000 rpm). Considering null initial
conditions, we solved the optimization problem in Corollary 4.1 obtaining a matrix P (θ) as given in (4.27)
defined by the scalars p = 0.0039, q = 1.7901× 10−4 and r = 1.9446× 10−4. This solution defines an upper
bound for the quadratic cost (4.37) given by J̄ = ξ′0P (θ0)ξ0 = 1.9632. Through a numerical simulation, we
have obtained the system trajectories evolving from x0 = 0, θ0 = 0 and governed by the switching function
(4.36). These trajectories are shown in Figure 4.5 and 4.6 and the associated switching signal, in Figure 4.7.
The corresponding quadratic cost obtained via numerical integration was J = 0.3704, which respected its
upper bound.
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Figure 4.5: Phase currents of a PMSM controled by switching rule (4.36).
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Figure 4.6: Rotational velocity of a PMSM controled by switching rule (4.36) and desired reference ω∗
(dashed line).
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Figure 4.7: Corresponding switching signal associated to the switching rule (4.36).

This example illustrated the efficiency of the proposed methodology. An important question to be made in view

of these results is whether a less conservative result could be found if a full constant matrix P > 0 were taken in

the Lyapunov function (4.27). Certainly, contrasting these two scenarios might not lead to a fair comparison

since different structures are being considered for the Lyapunov function but alternative stability conditions

might be of interest, as a 4th order matrix P provides 10 optimization variables while the presented methodology

only takes into account 3.

Adopting the simple quadratic Lyapunov function v̂(ξ) = ξ′Pξ with P > 0, asymptotic stability is assured

by analogous developments to those of Theorem 4.1 when the inequality

A(θ)′P + PA(θ) < −Q (4.67)

holds for all θ ∈ [0, 2π]. The next example compares the guaranteed cost for this case with Theorem 4.1.

Example 4.3. To assure that inequality (4.67) holds for every θ ∈ [0, 2π] the optimization problem

min
P>0

ξ′0Pξ0 s.t. (4.68)

A(θk)′P + PA(θk) < −Q (4.69)

with θk = 2πk/n, for all k ∈ {0, · · · ,M} and M = 100 is proposed. This is a sufficiently fine discretization
of the interval [0, 2π] since greater values of M yielded the same results. Employing the same data from
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Example 4.2, the solution obtained was a badly scaled matrix

P =


1.146× 1011 1.033× 106 1.033× 106 0

1.033× 106 2.924× 107 2.924× 107 0

1.033× 106 2.924× 107 2.924× 107 0

0 0 0 0.22

 (4.70)

whose eigenvalues are {0.22, 5.75, 5.8485× 107, 1.1458× 1011}, leading to an upper bound for the cost
(4.37) given by ξ′0Pξ0 = 2.4125× 103, which is approximately 1228 times greater than the one guaranteed
by Theorem 4.1 in Example 4.2.

This last example was important to show that the non-quadratic structure adopted for the Lyapunov function is

capable of adequately capture the nonlinear parameter-dependency of the PMSM dynamic model. In fact, even

with less decision variables, the minimum upper bound for the quadratic cost J , defined in (4.37), was smaller

when the Lyapunov function (4.26) had been employed, compared to a constant quadratic one.

Finally, effects of the choice of the cost weight d ∈ R+ must be discussed. Intuitively, larger values of

d should provide faster convergence of ω(t) towards the desired reference. On the other hand, smaller d will

reduce current peak values, which is generally a desired scenario to avoid equipment damage. The next example

quantitatively illustrates this aspect.

Example 4.4. To explore the effects of different d ∈ R+ values in the definition of the weight matrix Q and
the quadratic cost J in (4.37), the optimization problem of Corollary 4.1 was solved for a set of different d
values for the same data employed in Example 4.2. Via numerical simulation, different state trajectories
were obtained for the same null initial conditions. In Table 4.3, two performance indexes for each trajectory
are presented, namely, the absolute peak of the phase currents ip = maxt≥0 ‖iφ(t)‖∞ and the settling time
t2% at which the rotational velocity ω(t) attains an error less than 2% with respect to the reference ω∗.

Table 4.3: Absolute current peak and settling time for ω(t) obtained for several values of d.

d 0.001 0.0022 0.0046 0.01 0.0215 0.0464 0.1 0.2154 0.4642 1
ip (A) 0.9494 1.7886 3.0263 4.4306 5.6087 6.3718 6.7894 7.0006 7.1037 7.1515
t2% (s) 0.2592 0.1776 0.1060 0.0714 0.0554 0.0481 0.0447 0.0431 0.0424 0.0420

Indeed, the value d is an important parameter which has to be chosen adequately by the designer in order

to state a trade-off between current intensity and settling time, as shown in the last example. Other situations

will be studied from an experimental perspective in Chapter 5.

In the following section, another switched nonlinear system that arises in power electronics domain is

discussed.

4.3 AC-DC Converter

The contributions presented in this section were submitted in Egidio et al. (nd) and consist in developing a

framework to design a switching function, capable of deciding the state of switches in a three-phase bidirectional
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AC-DC power converter, also known as a controlled rectifier. The project must assure global asymptotic stability

of the state variable, composed of phase currents and output voltage, towards a desired reference trajectory in a

single control loop and avoiding using auxiliary reference frames or modulation strategies.

More precisely, while the output voltage must be maintained constant at some desired value, the input

currents have to track a sinusoidal reference to attain a unitary power factor operation, guaranteeing an efficient

use of the three-phase source. A set of attainable references is presented, which is not more restrictive than the

one for approaches based on averaged models. A parameter-dependent Lyapunov function was adopted, allowing

us to obtain less conservative solutions when compared to a classical quadratic one, regarding the minimization

of a performance index. Moreover, design conditions are written in terms of linear matrix inequalities making

the design step easily implementable using off-the-shelf optimization tools.

Consider a topology for the three-phase AC-DC power converter given in Figure 4.8, which is based on a

three-phase controlled rectifier with an inductive input filter and an output capacitor feeding a resistive load. By

means of Kirchoff’s voltage and current laws, the dynamic model of this system can be given by the switched

nonlinear system

ẋ(t) = Aσ(t)x(t) + b(θ(t)), x(0) = x0 (4.71)

where x(t) = [iφ(t)′ νo(t)]
′ ∈ R4 is the state vector, iφ(t) = [ia(t) ib(t) ic(t)]

′ ∈ R3 are input phase currents and

νo(t) ∈ R is the output voltage. The switching signal σ(t) ∈ K = {1, · · · , 7} is responsible to select one of the

seven possible subsystems at each instant of time. System matrices are given by

Aσ =

−(RL/L)I −(1/L)Sσ

(1/C)S′σ −1/(RoC)

 , b(θ) =

(νm/L)f(θ)

0

 (4.72)

where RL and L are the resistance and inductance of each coupling inductor, C is the dc-link capacitance, νm is

the peak phase-to-neutral voltage, Ro is the load resistance, the vector function f(θ) = [fa(θ) fb(θ) fc(θ)]
′ ∈ R3

is defined from (4.13)-(4.15), as in the previous section. Vectors Si, i ∈ K take values according to Table 4.4.

A time-varying angular parameter θ(t) represents the instantaneous electrical angle and is assumed to respect

θ(t) = ωt+ θ0 with constant angular frequency ω. In our context, this parameter is considered to be measured

by sensors or adequately estimated.

Our main goal is to design a state-dependent switching function capable of orchestrating the switching

νφ
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−
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Figure 4.8: Three-phase AC-DC power converter.
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Table 4.4: Modes σ, switch states and vector Si

σ s1 s2 s3 S′σ
1 0 0 1 [ -1/3 -1/3 2/3]
2 0 1 0 [ -1/3 2/3 -1/3]
3 0 1 1 [ -2/3 1/3 1/3]
4 1 0 0 [ 2/3 -1/3 -1/3]
5 1 0 1 [ 1/3 -2/3 1/3]
6 1 1 0 [1/3 1/3 -2/3]

7 1 1 1 [0 0 0]0 0 0

events of this system, bringing νo(t) to a constant reference value ν∗o chosen by the designer. In order to operate

in unitary power factor situation, phase currents iφ(t) must track a sinusoidal reference i∗φ(θ(t)) = i∗f(θ(t)),

synchronized with the source phase voltages. The control problem also allows for the minimization of an upper

bound for the cost integral

J =

∫ ∞
0

(
d‖iφ(t)− i∗φ(t)‖2 + (νo(t)− ν∗o )2

)
dt (4.73)

with the weight d ∈ R0+ chosen by the designer to state a trade-off between input current behavior in transient

state and the output voltage settling time.

Adopting the auxiliary state variable ξ(t) = x(t)− x∗(θ(t)) with the equilibrium trajectory x∗(θ(t)) =

[i∗φ(θ(t))′ ν∗o ]′, we can write the equivalent switched nonlinear system

ξ̇(t) = Aσ(t)ξ(t) + `σ(t)(θ(t)), ξ(0) = ξ0 (4.74)

with `j(θ) = Ajx
∗(θ) + b(θ)− ẋ∗(θ), j ∈ K and ξ0 = x0 − x∗(θ0). This permits to tackle the trajectory tracking

problem

lim
t→∞

x(t) = x∗(θ(t)) (4.75)

for the original system (4.71) by assuring global asymptotic stability of the origin ξ = 0 of system (4.74).

The set of equilibrium pairs (i∗, ν∗o ) defining the attainable trajectories x∗(t) is given by

X∗ = E ∩ H (4.76)

with the ellipse E and the region H given, respectively, by

E = {(i∗, ν∗o ) ∈ R2 : RLi
∗2 − νmi∗ + 2ν∗o

2/(3Ro) = 0} (4.77)

H = {(i∗, ν∗o ) ∈ R2 : (νm −RLi∗)2 + (Lωi∗)2 ≤ ν∗o
2/3} (4.78)

An illustration of one possible set X∗ is depicted in Figure 4.9. From the definition of E it can be concluded that a

necessary condition on ν∗o for the existence of an i∗ such that (i∗, ν∗o ) ∈ X∗ is that |ν∗o | ≤ νm
√

(3Ro)/(8RL) = ν̄∗o .

Hence, a pair (i∗, ν∗o ) ∈ X∗ can be obtained by taking the desired ν∗o to solve the second order equation in (4.77)

for i∗, providing up to two candidate pairs (i∗, ν∗o ) each of which can be tested to (i∗, ν∗o ) ∈ H.

At this point some trigonometric properties must be presented and discussed. They encompass some of
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i∗

ν∗o

H

E

Figure 4.9: Representation of X∗ (in red) as E ∩ H.

the properties presented in Subsection 4.2.1.

4.3.1 Trigonometric Properties

Consider the vector function f(θ) defined by identities (4.13)-(4.15). As discussed previously, we have that

e′f(θ) = 0, ∀θ ∈ R with e = [1 1 1]′, which let us shows that f(θ) belongs to the same Υ plane in R3 perpendicular

to vector e, formally defined in (4.23).

Consequently, along a trajectory of θ(t), time derivative of f(θ) also belongs to the plane Υ and it is given

by ḟ(θ) = ωg(θ) with g(θ) = [ga(θ) gb(θ) gc(θ)]
′ and

ga(θ) = cos(θ) (4.79)

gb(θ) = cos(θ − 2π/3) (4.80)

gc(θ) = cos(θ − 4π/3) (4.81)

with e′g(θ) = 0. Moreover, it also follows that

f(θ)′f(θ) =
3

2
, f(θ)′g(θ) = 0, g(θ)′g(θ) =

3

2
(4.82)

The matrix

R(θ) =

f(θ) g(θ) 0

0 0
√

3/2

 (4.83)

will be extensively employed throughout this section and some of its properties have to be highlighted. Firstly,

from (4.82), we have that

R(θ)′R(θ) =
3

2
I (4.84)

Additionally, it is also true that ġ(θ) = −ωf(θ) for any trajectory θ(t), allowing to demonstrate that

Ṙ(θ(t)) = R(θ(t))Ω (4.85)

with the skew-symmetric matrix

Ω =


0 −ω 0

ω 0 0

0 0 0

 (4.86)
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Even though these properties resemble those from rotation matrices, notice that R(θ) is not square, so it may

not be considered one. Finally, for an arbitrary diagonal matrix D = diag(d1I, d2) we also have that

DR(θ) = R(θ)V ′DV (4.87)

with the full rank matrix

V =


1 0 0

0 1 0

0 0 0

0 0 1

 (4.88)

4.3.2 Switching Function Design

To present design conditions based on LMIs capable of guaranteeing global asymptotic stability of the origin

ξ = 0 for system (4.74), the next lemma will be of main importance.

Lemma 4.2. Let scalars (κ, η, α, β, γ, µ, ϑ, ρ) of the structured positive definite matrices

TI =

[
κI 0

0 η

]
, TR =

α β µ

β γ ϑ

µ ϑ ρ

 (4.89)

be given. The inequality
TI −R(θ)TRR(θ)′ > 0 (4.90)

holds for every θ ∈ R if and only if
J ′TIJ − TR > 0 (4.91)

holds for J =
√

2/3V .

Proof: Firstly, notice that performing the Schur Complement Lemma in (4.90) with respect to TR and multiplying

both sides of the result by diag(I, TR), we obtain

κI • • • •

0 η • • •

αf(θ)′ + βg(θ)′
√

3/2µ α • •

βf(θ)′ + γg(θ)′
√

3/2ϑ β γ •

µf(θ)′ + ϑg(θ)′
√

3/2ρ µ ϑ ρ


> 0 (4.92)

Now, multiplying the second row and column by
√

2/3 and applying once more the Schur Complement Lemma,

but now with respect to κ, we obtain
2η/3 • • •

µ α • •

ϑ β γ •

ρ µ ϑ ρ

− κ
−1


0

αf(θ)′ + βg(θ)′

βf(θ)′ + γg(θ)′

µf(θ)′ + ϑg(θ)′




0

αf(θ)′ + βg(θ)′

βf(θ)′ + γg(θ)′

µf(θ)′ + ϑg(θ)′



′

=
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=


2η/3 • • •

µ α • •

ϑ β γ •

ρ µ ϑ ρ

−
3

2
κ−1


0 0

α β

β γ

µ ϑ




0 0

α β

β γ

µ ϑ



′

> 0 (4.93)

where the equality follows from the identities (4.82). Finally, performing the Schur Complement Lemma in (4.93)

with respect to κ, rearranging rows and columns and applying once more the Schur Complement Lemma with

respect to TR we have (4.91), concluding the proof. �

This last lemma provides a tool to efficiently verify that a matrix function as given in (4.90) is positive definite

for all θ ∈ R by evaluating the LMI in (4.91). Its importance will be clear in the proof of the next theorem.

To present globally asymptotically stabilizing design conditions, let us adopt a parameter-dependent

Lyapunov function

v(ξ, θ) = ξ′P (θ)ξ (4.94)

with the positive definite matrix

P (θ) = PI −R(θ)PRR(θ)′ (4.95)

where

PI =

pI 0

0 q

 > 0 (4.96)

and PR > 0 are to be determined.

Notice that the Lyapunov function (4.26) is a particular case of (4.94), with

PR =


0 0 −

√
2/3r

0 0 0

−
√

2/3r 0 0

 (4.97)

but this matrix is not positive definite as here imposed.

Evaluating the time derivative of v(ξ, θ) along trajectories ξ(t) and θ(t), we obtain

v̇(ξ, θ) = ξ′Wσ(θ)ξ + 2ξ′P (θ)`σ(θ) (4.98)

with

Wσ(θ) = A′σP (θ) + P (θ)Aσ + Ṗ (θ) (4.99)

The next theorem presents sufficient conditions for guaranteeing that v̇(ξ, θ) < 0 for all ξ 6= 0.

Theorem 4.3. Consider system (4.74) evolving from ξ(0) = ξ0, a nonnegative scalar d composing Q = diag(dI, 1)

and a desired pair (i∗, ν∗o ) ∈ X∗ be given. If there exist positive scalars p, q composing PI = diag(pI, q) and a
positive definite matrix PR satisfying the following LMIs

J ′PIJ − PR > 0 (4.100)

J ′(−Q− 2PIAI)J −Ψ > 0, Ψ > 0 (4.101)
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with
Ψ = He

(
PR
(
(3/2)AR − V ′AIV −Ω′

)
− V ′PIV AR

)
(4.102)

AI =

[
−(RL/L)I 0

0 −1/(RoC)

]
(4.103)

AR =

√
6

3ν∗o

 0 0 −νd/L
0 0 −ωi∗

νd/C Lωi∗/C 0

 (4.104)

and νd = RLi
∗ − νm, then the switching function σ(t) = u(ξ(t), θ(t)) with

u(ξ, θ) = arg min
j∈K

ξ′(Wj(θ)ξ + 2P (θ)`j(θ)) (4.105)

assures that the origin of (4.74) is a globally asymptotically stable equilibrium point and that

J ≤ v(ξ0, θ0) = J̄ (4.106)

for all ξ0 ∈ Rnx .

Proof: The proof follows from (4.98), which evaluated along an arbitrary trajectory of system (4.74), under the

switching function σ(t) = u(ξ(t), θ(t)), yields

v̇(ξ, θ) = min
j∈K

ξ′Wj(θ)ξ + 2ξ′P (θ)`j(θ)

= min
λ∈Λ

ξ′Wλ(θ)ξ + 2ξ′P (θ)`λ(θ)

≤ ξ′Wλ∗(θ)(θ)ξ + 2ξ′P (θ)`λ∗(θ)(θ) (4.107)

where λ∗(θ) is an arbitrary vector inside Λ. If for each θ, there exists λ∗(θ) ∈ Λ such that the inequality

Wλ∗(θ)(θ) < −Q is satisfied and `λ∗(θ)(θ) = 0, then we have v̇(ξ, θ) < 0 and the origin ξ = 0 is globally

asymptotically stable. In order to verify that `λ∗(θ)(θ) = 0, let us write

`λ∗(θ)(θ) =

L−1
(
(νm −RLi∗)f(θ)− Lωi∗g(θ)− ν∗oSλ∗(θ)

)
C−1(i∗S′λ∗(θ)f(θ)− ν∗o/Ro)

 (4.108)

Now, observe that the polytope P formed by vertices (S1, · · · , S7) is a regular hexagon perpendicular to the

vector e = [1 1 1]′, with an inscribed circumference of radius 1/
√

2, as shown in Figure 4.10. Hence, Sλ∗(θ) ∈ Υ

can be chosen as any linear combination of f(θ) and g(θ) as long as its length does not exceed 1/
√

2, given that

both f(θ), g(θ) ∈ Υ for all θ ∈ R. Indeed, choosing

Sλ∗(θ) =
νm −RLi∗

ν∗o
f(θ)− Lωi∗

ν∗o
g(θ) (4.109)

that makes null the first term of (4.108), the constraint S′λ∗(θ)Sλ∗(θ) ≤ 1/2 yields the region H, as defined

in (4.78). Moreover, replacing Sλ∗(θ) in the second term of (4.108), it is simple to verify that this element

becomes null whenever the pair (i∗, ν∗o ) is chosen as a point of the ellipse E . Hence, choosing (i∗, ν∗o ) ∈ X∗

assures that for each θ ∈ R there exists λ∗(θ) such that `λ∗(θ)(θ) = 0. For the same λ∗(θ), let us now show
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that inequality Wλ∗(θ)(θ) < −Q holds for all θ ∈ R whenever inequalities in (4.101) are satisfied. Firstly, let us

rewrite Aλ∗(θ) = AI −R(θ)ARR(θ)′ and evaluate Wλ∗(θ)(θ) as

Wλ∗(θ)(θ) = 2PIAI +R(θ)ΨR(θ)′ (4.110)

with Ψ defined in (4.102) obtained after applying (4.84), (4.85) and (4.87) adequately. Now, by applying Lemma

4.2 in (4.101) for TI = −Q− 2PIAI and TR = Ψ, and observing that TR > 0, we have that

−Q− 2PIAI > R(θ)ΨR(θ)′ (4.111)

showing that Wλ∗(θ)(θ) < −Q. The positive definiteness of P (θ) is guaranteed by (4.100) together with Lemma

4.2, but now with TI = PI and TR = PR. Finally, from (4.107), we obtain v̇(ξ, θ) < −ξ′Qξ for all ξ 6= 0, assuring

global asymptotic stability of the origin. At last, integrating this last inequality from t = 0 up to infinity allows

us to determine the upper bound (4.106), concluding the proof. �

The above theorem provides sufficient conditions for the design of a switching function able to assure

global asymptotic tracking of x∗(θ(t)), bringing the AC-DC converter to a steady output ν∗o and controlling

input currents to assure unitary power factor operation. It is important to notice that the design conditions

are given in terms of LMIs, being, therefore, easy-to-solve with readily available tools. Another remark is that

the proposed switching function (4.105) can be interpreted as a selection of the subsystem j ∈ K such that the

steepest possible descend direction for the Lyapunov function occurs.

A parameter-dependent Lyapunov function was employed and showed to be adapted to the system

dependency on θ(t). Indeed, an alternative approach, based on a simple quadratic Lyapunov function v̂(ξ) = ξ′Pξ

with a constant P > 0, could be considered. However, this requires to impose the condition

A′λ∗(θ)P + PAλ∗(θ) < −Q (4.112)

for all θ ∈ [0, 2π] that can be done by assuring this inequality over a sufficiently fine grid of points. This

alternative strategy is not only less efficient but also provided more conservative results in our tests, in spite

of the fact that it takes into account more optimization variables. This will be illustrated in Section 4.3.5.

Finally, notice that the stability conditions in this theorem require only that Aλ∗(θ) is Hurwitz stable, making no
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•
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•

Figure 4.10: Graphical representation of polytope P and inscribed circumference.
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imposition regarding stability of matrices Aj , j ∈ K, isolatedly considered, although all of them are also stable.

In the sequel, we present some theoretical comparisons with techniques based on an averaged system

response and also discussions regarding computational issues.

4.3.3 Averaged Model Comparison

Averaged model techniques are extensively used in switched systems such as the proposed converter, for instance

in Wu et al. (1990). Indeed, these techniques rely upon the fact that sufficiently fast switching between subsystems

creates an averaged dynamics, which governs the state evolution. Surely, this takes into account Fillipov solutions

ξ(t) for the error system (4.74) that must satisfy the differential inclusion

ξ̇(t) ∈ {Aλξ(t) + `λ(θ(t)) : λ ∈ Λ} (4.113)

Notice that the origin ξ = 0 of this system (4.74) is an equilibrium point if and only if there exist for

each θ ∈ R a λ(θ) ∈ Λ such that `λ(θ)(θ) = 0, assuring ξ̇(t) = 0. Given the discussions presented in the proof

of Theorem 4.3, we can conclude that, for this particular system, this requirement is fulfilled if and only if

(i∗, ν∗o ) ∈ X∗, with X∗ given in (4.76). Hence, we can conclude that the proposed set X∗ contains all pairs

(i∗, ν∗o ) defining a steady-state response x∗(θ(t)) for (4.71) attainable by a averaged model strategy.

4.3.4 Computational Analysis

From a computational point of view, the evaluation of the proposed switching function (4.105) is of low complexity

since it can be recast in a simpler equivalent form, that is given in this subsection. Indeed, we have that

hj(ξ, θ) = ξ′
(
Wj(θ)ξ + 2P (θ)`j(θ)

)
= ξ′

(
2P (θ)

(
Aj
(
ξ + xe(θ)

)
+ b(θ)− ẋe(θ)

)
+ Ṗ (θ)ξ

)
Note that the dependency on index j ∈ K is present only in term 2ξ′P (θ)Aj

(
ξ + x∗(θ)

)
, indicating that it is

unnecessary to evaluate the remaining ones. Moreover, employing trigonometric identities, we can decompose

R(θ) = GR̄(θ) (4.114)

with

G =
1

2


2 0 0

−1 −
√

3 0

−1
√

3 0

0 0
√

6

 , R̄(θ) =


sin(θ) cos(θ) 0

cos(θ) − sin(θ) 0

0 0 1

 (4.115)

Consider now the matrix G# = (2/3)G′. Notice that GG# = I − (1/3)ẽẽ′ with ẽ = [1 1 1 0]′ and that

ẽ′ξ = ẽ′x∗(θ) = 0, assuring the identities

GG#ξ = ξ, GG#x∗(θ) = x∗(θ) (4.116)



CHAPTER 4. SWITCHED NONLINEAR SYSTEMS 137

Defining h̄j(ξ, θ) = ξ′P (θ)Aj
(
ξ + xe(θ)

)
, given the previous discussion we have that

h̄j(ξ, θ) = ξ′G#′G′
(
PIAj −R(θ)PRR(θ)′Aj

)
GG#

(
ξ + x∗(θ)

)
= ξ′G#′ (Pj −R(θ)Aj)G#

(
ξ + x∗(θ)

)
with Pj = G′PIAjG, R(θ) = (3/2)R̄(θ)PRR̄(θ)′ and Aj = G′AjG. Observe that matrices Pj and Aj can be

calculated a priori. Finally, taking into account that ic = −ia − ib, the vectors x̄ = G#x and x̄∗(θ) = G#x∗(θ)

can be calculated as

x̄ =


ia

−(
√

3/3)(ia + 2ib)

(
√

6/3)νo

 , x̄∗(θ) =


i∗ sin(θ)

i∗ cos(θ)

(
√

6/3)ν∗o

 (4.117)

leading to an equivalent switching function

u(x̄, θ) = arg min
j∈K

(
x̄− x̄∗(θ)

)′
(Pj −R(θ)Aj) x̄ (4.118)

which is more adapted for implementation in microcontrollers. Indeed, at each control update the most demanding

operations required are two trigonometric function evaluations (i.e. sin(θ) and cos(θ)), two 3x3 matrix products

for determining R(θ) and then 7 evaluations of the expression in (4.118), which can be efficiently performed for

each j ∈ K. The next subsection presents simulation results of the presented approach.

4.3.5 Simulation Results

Some numerical results are discussed in this subsection. Firstly, let us demonstrate the efficiency of the proposed

methodology by means of the following example, with data borrowed from the literature.

Example 4.5. The goal is to bring the output voltage of the AC-DC converter given in Figure 4.8 to
a steady-state value of ν∗o = 120 V while operating in unitary power factor. The numerical data were
borrowed from Bouafia et al. (2009) and are given in Table 4.5.

Table 4.5: System parameters adopted in simulations.

Quantity Value Unit
Ro 175 Ω

RL 0.56 Ω

L 19.5 mH
ω 2π × 50 rad/s
C 2.35 mF
νM 40.825 V

To this end we could verify that, for i∗ = 1.369 A, the pair (i∗, ν∗o ) ∈ X∗ defines a reachable steady state
trajectory x∗(θ) = [i∗f(θ)′ ν∗o ]′. Adopting this equilibrium pair, we have solved the optimization problem

min
p,q,PR

(
x0 − x∗(θ0)

)′
P (θ0)

(
x0 − x∗(θ0)

)
(4.119)
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subject to (4.100)-(4.102) considering x0 = 0 and θ0 = 0. Moreover, to obtain a fast convergence of νo(t)
toward ν∗o , we chose d = 0. This objective function is responsible for minimizing the upper bound J̄ defined
in (4.106). An optimal solution was obtained for p = 6.2576× 104, q = 5.6854× 103 and

PR =

4.1718× 104 −0.0082 −0.0155

−0.0082 4.1718× 104 −0.0487

−0.0155 −0.0487 3.7902× 103

 (4.120)

assuring an upper bound in (4.106) of J̄2 = 1975.32 > J . For sake of comparison, solving the analogous
problem with the constraint (4.112), related to a quadratic Lyapunov function v̂(ξ) = ξ′Pξ, yields an upper
bound J̄ = 2965.81, showing that the proposed Lyapunov function is better adapted to this system.

Simulating the system response from x0 = 0, the state trajectories obtained and the correspondent
switching signal are shown in Figure 4.11, 4.12 and 4.13. From these data we can conclude that the proposed
switching function was successful in controlling the converter output voltage towards a constant value of
120 V, under unitary power factor operation.
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Figure 4.11: Phase currents ia(t) (blue) and ib(t) (red) and steady-state references (dashed lines).
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Figure 4.12: Output voltage νo(t) and correspondent steady-state reference (dashed line).
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Figure 4.13: Switching signal σ(t) generated by the proposed switching function.
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As it can be noticed in Figure 4.13, the switching frequency during the transient response was relatively

low, when compared to the steady-state. This implies that the present methodology may be of interest in

contexts where reducing the number of switching events is desirable. However, notice that no bounds on the

switching frequency were presented. This issue is still to be studied in this context of the parameter-dependent

systems, presented in this chapter and the next example serves as a motivation for this topic.

Example 4.6. For the sake of curiosity, let us investigate the effects of employing a piecewise constant
switching function as

σ(t) = u(ξ(tn), θ(tn)), ∀t ∈ [tn, tn+1) (4.121)

where tn, n ∈ N are switching instants respecting t0 = 0 and the switching period T = tn+1 − tn. For
several values of T , the steady-state behavior of the phase current ia(t) and output voltage νo(t) are shown
in Figure 4.14 along with the corresponding references (dotted lines).
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Figure 4.14: Steady-state response of current ia(t) (above) and voltage νo(t) (below) for several values of T .

Notice that the performance is impaired as larger values of switching period T are adopted. This demonstrates
the importance of taking into account this aspect into the design step, motivating future works.

4.4 Concluding Remarks

This chapter presented design methodologies for switching functions capable of controlling the state variables of

two switched nonlinear systems, assuring asymptotic stability of a desired trajectory. The first system, consists

of a PMSM fed by a VSI, where the switches in the inverter are commanded to make the velocity ω(t) track a

desired profile ω∗(t). The second system is a three-phase AC-DC rectifier, whose output voltage is kept constant

while sinusoidal currents as drawn from each input phase, to preserve unitary power factor. Both methodologies

have in common the adoption of parameter-dependent Lyapunov functions, which was shown to be more adapted
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for these problems. Indeed, the time-varying parameter θ(t), regarded as the electrical angle of these AC systems,

is took into account in the design step and in both switching functions. This particular choice of Lyapunov

function provided efficient design methodologies, based on LMIs, assuring guaranteed quadratic costs and leading

to less conservative results, when compared to a classical quadratic Lyapunov function, in our examples.

The proposed approaches dismiss the use of auxiliary reference frames or space-vector modulation and are

of low computational complexity. Moreover, they seem to be adaptable to AC systems with higher numbers of

phases or the control of synchronous and brushless DC machines, which are topics to be addressed in related

future works.
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Chapter 5

Experimental Results

“A minha alucinação é suportar o dia-a-dia / E meu delírio é a experiência com coisas reais.”
— Antonio Carlos Belchior, Alucinação (1976)

Although this dissertation is mainly devoted to control theory studies, some experiments were carried out

to validate theoretical results previously presented. The tests employed power electronic devices largely diffused

in the industry. Our goal is to evaluate the performance of these devices, usually controlled by averaged model

approaches, under the switched control strategies that were developed. Part of the results in this chapter are

available in Egidio et al. (2017). Another reference containing experimental verification of techniques presented

in this dissertation is Garcia et al. (2009), where switching functions designed by Theorem 2.15 are implemented

to control a boost converter, in the continuous-time domain.

5.1 Buck-boost DC-DC Converter

A bidirectional buck-boost DC-DC converter is a versatile power switching converter topology, allowing to

step-up or step-down the output voltage, only by varying the switching pattern. A simplified schematic of this

circuit is shown in Figure 5.1. A DC source with voltage E and internal resistance Rs supplies the converter

input. An inductor with inductance L, winding resistance RL and a capacitor with capacitance C integrate the

buck-boost circuit together with two switches sw1 and sw2. These switches are commanded alternately and

are responsible for the existence of two subsystems that are numbered 1, when sw1 is closed, and 2, otherwise.

Applying the Kirchhoff’s circuit laws for each case, we obtain the following dynamic equations for this system.

σ = 1: sw1 closed and sw2 open:

L
diL(t)

dt
= E − (Rs +RL)iL(t) (5.1)

C
dνc(t)

dt
= −νc(t)

Ro
(5.2)

σ = 2: sw2 closed and sw1 open:

L
diL(t)

dt
= −RLiL(t)− νc(t) (5.3)

Ro

sw2

Rs

−
+

E

sw1

L

iL

RL

C

+

−

νc

Figure 5.1: Buck-boost circuit schematic.
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Table 5.1: Identified parameters for the built buck-boost converter.

Quantity Value Unit
E 10.75 V
C 2.2 mF
L 0.848 mH
RL 1.129 Ω
Ro 68 Ω
Rs 0.45 Ω

Figure 5.2: Photo of the developed buck-boost converter.

C
dνc(t)

dt
= −νc(t)

Ro
+ iL(t) (5.4)

Defining the system state vector as being x(t) = [iL(t) νc(t)]
′, the converter can be represented by the continuous-

time switched affine system with state-space realization

dx(t)

dt
= Fσx(t) + gσ, x(0) = x0 (5.5)

with matrices given by

F1 =

−(RL +Rs)/L 0

0 −1/(RoC)

 , g1 =

E/L
0

 , F2 =

−RL/L −1/L

1/C −1/(RoC)

 , g2 =

0

0

 (5.6)

which defines N = 2 affine subsystems with σ(t) being the switching function that selects one of them to be

activated at each instant of time.

An experimental setup was designed to allow the validation of some of the proposed switching techniques.

System parameters were measured and are available in Table 5.1. Additionally, a photo of the circuit is given in

Figure 5.2. The switches sw1 and sw2 are a pair of built-in IGBTs from International Rectifier found inside the

IRAMX20UP60A hybrid IC. This IC integrates the half-H bridge and the gate drivers as well as the appropriate

protections. A Hall effect-based current sensor, namely the Allegro ACS712, allows the acquisition of iL,
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appending an insignificant impedance to the circuit. The acquisition and control system were implemented in a

dSPACE DS1104 controller board, which is capable of running the required real-time routine. An analog-to-digital

converter acquires the current sensor output and the voltage νc.

The fixed sampling rate of fs = 1/T = 1 kHz was chosen, at which the real-time program is responsible

for acquiring the state variables and for digital conditioning. Whenever the updated state is available, the board

microprocessor evaluates a proposed control law to decide whether the switches have to be closed or opened. At

this instant of time, the controller board sends the suitable signal to the IC, directly to the input of sw1 and

passing through a NOT gate to sw2. The propagation delay of the NOT gate, the HD74LS04P, is negligible.

The goal is to design a suitable state-dependent switching function taking into account an upper bound

for the switching frequency in order to avoid chattering occurrence and to make possible that some important

aspects appearing in practical implementations be considered, as for instance, the response time of the converter

switches. Hence, the idea is to impose a constraint on the switching rule that must remain constant during all

t ∈ [tn, tn+1) with tn+1− tn = T > 0 where T > 0 is the defined sampling period. This constraint is introduced in

equation (2.139) and allows to bound the switching frequency from above by the sampling frequency fs. In this

case, we can employ the step-invariant discretization procedure (2.77) for each subsystem, defining an equivalent

discrete-time switched affine system with state-space realization given as (3.1), where x[n] = x(tn) = x(nT ) ∈ Rn

for all n ∈ N.

The following experiment demonstrates how a state-dependent switching function can be designed adopting

the switching strategy proposed by Theorem 3.3 which, as has been discussed just after Theorem 3.1, is equivalent

to Theorem 1 of Deaecto and Geromel (2017) adopted in Egidio et al. (2017) from where the experimental results

of the next two experiments were borrowed.

Experiment 5.1. Consider the buck-boost converter circuit presented above. In order to control its output
voltage around νc(t) = 4 V, the optimization problem in Theorem 3.3, was solved for λ = [0.5339 0.4661]′,
which is associated to the equilibrium point xe = [iLe νce]

′ = [0.3915 4.0000]′ ∈ Xe, defined in (3.5).
Details about the implementation of this solution are available in Appendix B. The solution found for
β = 6.06 provided matrices

P =

[
0.0113 0.0486

0.0486 0.4150

]
(5.7)

Qi, vectors h, ci and scalars ρi for i ∈ {1, 2} and allowed the implementation of the switching function
(3.10), capable of assuring global practical stability of the desired xe and the existence of an invariant set of
attraction V, as defined in (3.42). A comparison between the experimental and the simulated evolution
of state variables from x0 = [0 0]′ is carried out in Figure 5.3. At the beginning, notice that the current
in the real inductor increases in a smaller rate than in the simulation due to the DC supply slew rate.
Nevertheless, this difference is only relevant during the beginning of the transient response.
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Figure 5.3: Experimental response of a buck-boost converter controled by the switching function (3.10).

This experiment showed how a buck-boost DC-DC converter can be controlled by the state-dependent

switching function (3.10). Indeed, the proposed methodology was successful in achieving the desired output

voltage. A more involving case is presented in the next section where the output load is replaced by a DC motor

and a switching function will be designed to control its velocity and the electrical variables in a single control

loop.

5.2 DC-DC Converter Feeding DC Motor

Let us now replace the resistor Ro by a DC motor, as depicted in Figure 5.4. The DC motor is considered to have

a winding inductance Lm, winding resistance Rm, electrical and mechanical constants Ke and Km. Moreover

an inertia was attached to its shaft, and the total inertia is given by J . The mechanical modeling assumes the

existence of a friction torque which depends on the rotational velocity and is composed of a combination of

sw2

Rs

−
+

E

sw1

L

iL

RL

C

+

−

νc M J

ω

Figure 5.4: Buck-boost and DC-motor circuit schematic.
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viscous and Coulomb frictions. This external torque is taken as

Tf (ω) = Tvω + Tdsign(ω) (5.8)

This nonlinearity is illustrated in Figure 5.5. In the context of this experiment, the motor shaft only turns in one

direction since the buck-boost converter output is always inverted with respect to the input supply. Hence, a

simplification can be adopted concerning the sign function, leading to an affine dynamic model for the mechanical

part, obtained through the Newton-Euler equations and given by

J
dω(t)

dt
+ Tvω(t) + Td = Kmim(t). (5.9)

The updated electrical model is also defined for each subsystem as it follows.

σ = 1: sw1 closed and sw2 opened:

L
diL(t)

dt
= E − (Rs +RL)iL(t) (5.10)

Lm
dim(t)

dt
= −Rmim(t)−Keω(t)− νc(t) (5.11)

C
dνc(t)

dt
= im(t) (5.12)

σ = 2: sw2 closed and sw1 opened:

L
diL(t)

dt
= −RLiL(t)− νc(t) (5.13)

Lm
dim(t)

dt
= −Rmim(t)−Keω(t)− νc(t) (5.14)

C
dνc(t)

dt
= im(t) + iL(t) (5.15)

Let us consider Lm sufficiently small, such that the motor electrical dynamics can be neglected. However, for

motors that this assumption is not consistent, Lm can be included in the affine model by simply adding a state

variable im. Defining the system state vector as being x = [iL νc ω]′, the combination DC motor/Buck-boost

converter can be represented by the continuous-time switched affine system with state-space realization

dx(t)

dt
= Fσx(t) + gσ, x(0) = x0 (5.16)

ω

Tf (ω)

−Td

Td

Figure 5.5: Friction torque in function of the rotational velocity.
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Figure 5.6: Photo of the considered DC motor.

Table 5.2: Identified parameters for the DC motor.

Quantity Value Unit
Ke 0.051 V.s/rad
Km 0.051 N.m/A
Rm 10.207 Ω
J 3.792 g.m2

Td 6.195 mN.m
Tv 76.220 µN.m.s/rad

with matrices given by

F1 =


−(RL+Rs)

L 0 0

0 −1/(RmC) −Ke/(RmC)

0 −Km/(JRm) −TvRm−KmKe
JRm

 , F2 =


−RL/L −1/L 0

1/C −1/(RmC) −Ke/(RmC)

0 −Km/(JRm) −TvRm−KmKe
JRm

 (5.17)

g1 =


E/L

0

Td/J

 , g2 =


0

0

Td/J

 (5.18)

which defines N = 2 affine subsystems with σ(t) being once more the switching signal that selects one of them

to be activated at each instant of time.

The same setup presented in the last section was adopted. The considered DC motor is shown in Figure

5.6 and the identified parameters are given in Table 5.2. To acquire the rotational velocity ω(t), the motor

shaft is coupled to an incremental encoder that produces a square wave of which time differences between rising

edges are measured by a hardware interruption handler. The experimental validation of the switching function

proposed in Theorem 3.3 was done in this system and is given in the following experiment.
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Experiment 5.2. Firstly, let us investigate which are the rotational velocities ωe that are attainable by
the methodology proposed in Theorem 3.3. Naturally, let us turn our attention to the associated set of
attainable equilibrium points Xe, which is defined in equation (3.5). By evaluating xe for every λ ∈ Λ, the
attainable set of steady state velocities is given in Figure 5.7 as a function of the first element of λ. For
comparison, the same was done regarding the continuous-time case, whose set Xc

e is given in (2.125).

λ1

ω
e
(r
ad

/s
)

Xce
Xe

0

Figure 5.7: Attainable rotational velocities for continuous and discrete-time switched control techniques.

Notice that bounding the switching frequency, in the discrete-time case, has restricted the range of attainable
velocities for this approach. However, as previously discussed in Subsection 3.2.4, adopting small enough
sampling period makes Xe become closer to Xc

e .
For the sake of comparison, four switching functions were implemented to bring the motor rotational

velocity to a steady value of ωe = −40 rad/s. To this end, we have chosen the vector λ = [0.3171 0.6829]′

correspondent to xe = [0.5173 3.8744 −39.9493]′ ∈ Xe, allowing to write the equivalent discrete-time
system (3.2) on the auxiliary state variable ξ[n].

The first switching function, denoted by ua(t), is a periodic time-dependent signal known as PWM,
previously presented in (2.88). The duty-cycle α = 0.30 was chosen from the averaged model (see discussions
following (2.88) for more details) in order to guarantee ω(t) → ωe. Its period TP = 2T assures a fair
comparison with the state-dependent rule, i.e., the state-dependent switching functions will not switch more
than the time-dependent function inside any interval of time. The second switching function, represented by
uV(ξ), is defined as (3.10) and was designed from the solution to the optimization problem of Theorem 3.3,
which minimizes the invariant set of attraction given in (3.42). For more details regarding the optimization
procedure, refer to Appendix B. A third switching function uX (ξ) was designed solving the conditions of
Theorem 3.1 that takes into account the volume minimization of the set of attraction X , defined in (3.11).
The last adopted switching function, denoted ud(ξ), was implemented considering the same conditions as in
Deaecto and Geromel (2017) but bounding the volume of the set of attraction X and optimizing the decay
rate. Hence, we have solved the generalized eigenvalue minimization problem (see Boyd et al. (1994))

min
P>0,ρ∈[0,1]

ρ s.t. (5.19)
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∑
i∈K

λiA
′
iPAi − ρP < −γI,

∑
i∈K

λi`
′
iP`i < 1, (5.20)

for γ = 3× 10−6, which constrains the volume to obtain a suitable decay rate of
√

1− ρ = 0.0121. For the
two last rules, the correspondent invariant set could be obtained by solving the conditions of Theorem 3.2.

time (s)

ω
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)
(r
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ua(t)
ud(ξ)
uX(ξ)
uV(ξ)

Figure 5.8: Experimental response of a DC motor fed by buck-boost converter under several switching
functions.

Time evolution of ω(t), measured through the motor shaft encoder, is presented in Figure 5.8. Not
surprisingly, it can be noticed that ua with a settling time of te = 53.93 s presented the worst performance
compared with the other three switching functions. This is natural since it is an open-loop technique
whereas the others take into account the measurement of the discrete-time state ξ[n]. Notice that, for
this function, the velocity in steady state was slightly different from the desired one since the model does
not reflect a perfect behavior of the real system (for example, neglecting temperature transient, parasitic
elements, etc.).

Figure 5.9: State trajectory ξ under uV , obtained experimentally, and sets V and X .
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Finally, Figure 5.9 presents the time evolution of the state trajectory ξ, obtained experimentally, and
the sets of attraction V and X . Also as expected, the state ξ does not leave the invariant set V once it is
attained.

From the results presented in this experiment, we can conclude that the proposed state-dependent switching

functions were able to successfully control the motor rotational velocity. As showed in Figure 5.8, the nonlinear

behavior of the switching function is evident in all state-dependent rules. It is important to remark that as

we adopt greater values of T > 0 the steady-state velocity may become different from ωe also presenting an

oscillatory behavior. However, the state vector ξ will always be inside the invariant set of attraction and the

volume minimization procedure assures that ξ is as near as possible the desired equilibrium.

Let us now compare quantitatively the switching functions designed previously. Calculating the error

ε̄ =
ωe − ω∞

ωe
(5.21)

where ω∞ denotes the average steady-state rotational velocity, and the settling time te within 5% of the

steady-state reference, these values for each experimentally obtained state trajectory are given in Table 5.3.

These quantities lead to the conclusion that all switching functions presented a very small steady-state error and

that σd, as expected, provided the fastest transient response.

ud uX uV

vol(X )/vol(V∗) 2.25% 0.13% 3.09%

vol(V)/vol(V∗) 2363.92% 133.66% 100%

ε̄ 0.48% 0.05% 0.05%

te [s] 12.91 17.77 14.30

Table 5.3: Quantitative comparison of switching functions.

A comparison of the volumes, which were expressed relatively to the set of attraction V of Theorem 3.3, is

also shown in Table 5.3. As it can be verified, uV guarantees the invariant set V with the smallest volume while

uX has the smallest set X among the switching functions implemented. This fact puts in evidence the effect of

volume minimization in each design method.

The results presented in this section validated experimentally some methodologies for practical stability

introduced in Chapter 3. Two experiments based on a classical buck-boost converter were provided and the

performance of each case was evaluated.

5.3 PMSM and Voltage Source Inverter

Regarding the validation of the methodology for controlling a PMSM fed by a voltage source inverter presented

in Section 4.2, it was experimentally implemented in a system whose parameters are given in Table 5.4. The

following experimental results have been obtained embedding the proposed switching function in a Texas
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Table 5.4: Identified system parameters.

Quantity Value Unit
R 2.19 Ω
L 8.1 mH
λ 6.0 ×10−2 V.s/rad
c 3.1 ×10−4 N.m.s/rad
J 3.0 ×10−4 kg.m2

Vdc 100 V
τ 8.7 ×10−3 N.m

Figure 5.10: Photo of the experimental setup for controlling the PMSM.

Instruments TMS320F28069 microcontroller (MCU) under sampling frequency fs = 40 kHz. Phase currents

were measured through shunt resistors and data were acquired by means of built-in analog-to-digital converter

and quadrature encoder pulse modules. The motor is the Estun EMJ-04APB24 and a propeller with a diameter

of 50.8 cm was attached to its shaft, as shown in Fig. 5.10. An incremental encoder with 2,500 steps per rotation

was used to measure both rotational velocity and displacement. The rotational velocity signal has been filtered

by means of a first order Butterworth filter with cutoff frequency ωc = 4,000 rad/s, discretized through the

bilinear transformation. This allows to calculate the rotational velocity within a suitable precision. The next

experiment shows a comparison between experimental and simulated responses for this system controlled under

the switching function proposed in Theorem 4.1.

Experiment 5.3. We have designed the switching function (4.36) to assure asymptotic convergence of
ω(t) toward various velocity profiles. Particularly in this experiment, a constant ω∗ = 100 rad/s is adopted
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as reference. To this end, we have considered κ = 314.1593 rad/s (or 3,000 rpm, the motor rated speed),
which assures that the chosen ω∗ ∈ Ω∗ is reachable. Solving the optimization problem (4.59) stated in
Corollary 4.1 for x(0) = 0, θ(0) = 0, ω∗(t) = 100 rad/s and Q = diag(I, 1), we have obtained the solution

p = 2.8790, r = 0.0672, q = 0.1111 (5.22)

and the upper bound for (4.37) given by ξ′0P (θ0)ξ0 = 1120.23. This solution allows the implementation of
the switching function (4.36). Figures 5.11 and 5.12 show the experimentally obtained rotational velocity
ω(t) and phase current ia(t), respectively, along with their simulated responses. The resulting switching
signal is given in Figure 5.13. The simulated and experimental responses are very close and the angular
velocity ω(t) has attained the desired ω∗ as expected, thus validating the proposed control technique as
well as the adopted experimental arrangement.
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Figure 5.11: Experimental and simulated rotational velocities for ω∗ = 100 rad/s.
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Figure 5.12: Experimental and simulated phase current ia(t) correspondent to ω∗ = 100 rad/s.
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Figure 5.13: Switching signal for a constant ω∗ = 100 rad/s.
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This experiment showed how the proposed model precisely captured the dynamics of the PMSM fed by the

voltage source inverter and that the methodology provided by Theorem 4.1 successfully controlled the rotational

velocity toward the desired reference. Now, our goal is to investigate the effects of the adoption of a time-varying

reference ω∗(t) ∈ Ω∗. Notice that the switching function designed in Example 5.3 is robust with respect to the

reference trajectory being capable of assuring asymptotic stability of any ω∗(t) ∈ Ω∗. This situation is explored

in the following experiment.

Experiment 5.4. To avoid the current overshoot present in Figure 5.12 during the motor start-up, a
piecewise linear reference ω∗(t) was adopted to bring gradually the rotational velocity to 50 rad/s, 100

rad/s and then to a complete stop. This will be done by limiting the angular acceleration |ω̇(t)| < 50

rad/s2, in order to avoid high peak currents. For the given κ, we have verified that even though discon-
tinuities are present in the time-derivative of the desired velocity profile, ω∗(t) does belong to the set
of attainable ones Ω∗ for almost every t ∈ R0+. Indeed, all the piecewise linear parts of ω∗(t) belong
to Ω∗ and, therefore, asymptotic stability is assured along them. In this sense, the discontinuities can
be interpreted as new initial conditions for the remaining state trajectory. The transient response for
the rotational velocity ω(t) along with the desired ω∗(t) is given in Figure 5.14. The obtained current
trajectory for the phase current ia(t) is shown in Figure 5.15 keeping the same vertical scale as Figure 5.12.
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Figure 5.14: Experimental rotational velocity ω(t) and correspoding reference ω∗(t).
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Figure 5.15: Experimental phase currents ia(t) obtained considering the reference ω∗(t).

This allows us to verify that the current peak was drastically reduced. This point is of great practical
interest as high peak currents may cause premature failure and equipment wear.
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Some comments are in order regarding the computational complexity of the proposed approach. We were

able to perform the calculation of (4.65) and (4.31) within 477 clock cycles, using floating-point arithmetic. For

the sake of comparison, the field-oriented control approach provided by Texas Instruments ControlSuite must

compute a Clarke and a Park Transform, three discrete-time PI controller updates, an inverse Park Transform

and a Space-Vector generation of PWM signals, which is done within 535 clock cycles also using floating-point

arithmetic in the same microprocessor. Further investigations and other accelerations should be applied, but

this preliminary comparison shows that our approach is implementable and may prosper in terms of demanding

lower computational effort.

5.4 Concluding Remarks

Three experiments were presented in this chapter. The first two were based on a buck-boost DC-DC converter

feeding, respectively, a resistive load and a DC motor. These setups, modeled as switched affine systems, allowed

to validate the design methodology presented in Section 3.2, regarding practical stability. In this case, bounding

the switching frequency accordingly, the state trajectories were globally guided to an invariant set of attraction

containing the desired reference point xe. Different switching functions were compared experimentally and

theoretically.

The third experiment adopted a permanent magnet synchronous machine fed by a voltage source inverter.

The methodology present in Section 4.2 was considered and the rotational velocity of the PMSM was controlled,

first toward a constant reference and, subsequently, toward a piecewise linear trajectory. This last approach

showed to be efficient in reducing current peaks, avoiding premature system damage.

Although not extensively, the experiments presented in this chapter close the exposition of results obtained

throughout my Ph.D. and motivate the applicability of some developed techniques. Indeed, further tests and

other experimental setups must be employed to investigate undisclosed aspects of these methodologies. This will

certainly put in evidence practical issues that make arise new control problems and, consequently, let us search

for their solutions.
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Chapter 6

Conclusions and Future Works

“Corra não pare, não pense demais / Repare essas velas no cais / Que a vida é cigana”
— Alçeu Valença & Geraldo Azevedo, Caravana (1985)

6.1 Conclusions

This conclusion is devoted to highlight the main contributions presented in this Ph.D dissertation. Firstly,

fundamental results gathered from the literature composed Chapter 2, which was the basis for the subsequent

chapters.

In Chapter 3, three novel methodologies for designing globally stabilizing switching functions for discrete-

time switched affine systems were provided. The first one is inspired in practical stability studies, where the

existence of a set of attraction, to where the system trajectories are globally attracted, is assured. An approach

inspired by existing results was given in Theorem 3.1 and then generalized to cope with the output feedback

problem in Theorem 3.4. This generalization took into account a full-order switched affine filter and it was

shown that any set of attraction assured by the state feedback case can also be assured under output-dependent

switching. Less conservative conditions with respect to practical stability guarantees were provided in Theorem

3.6, pioneering the adoption of Lyapunov-Metzler inequalities and min-type Lyapunov functions in the context of

switched affine systems. Finally, instead of assuring stability towards a set of attraction containing the desired

equilibrium, an approach to design a suitable limit cycle taking into account the desired steady-state behavior of

the system trajectories and to guarantee its global asymptotic stability was given in Theorem 3.9. This approach

allowed to adopt H2 and H∞ performance index for the first time in the context of discrete-time switched affine

systems, being possible to optimize the transient response of this class of systems.

Studies regarding the control of particular switched nonlinear systems, which are harmonically dependent

on a time-varying parameter, were performed throughout Chapter 4. The main interest behind these classes

arises from AC power systems where an angular parameter called the electrical angle governs the oscillatory

behavior in the system dynamics. Namely, the considered systems were the a permanent magnet synchronous

machine fed by a voltage source inverter and an AC-DC power converter based on a controlled rectifier. The

approaches in this chapter took into account the original reference frame, introducing a new fashion of controlling

these type of systems. To obtain design conditions written in terms of LMIs, a new class of parameter-dependent

Lyapunov functions was introduced, which also allowed to reduce the conservativeness compared to when a

simple quadratic one is adopted.

Finally, some experiments were presented in Chapter 5, validating theoretical results developed in the

previous chapters and motivating the practical interest on these methodologies. In the next section, topics

related to this dissertation that require further investigation in future works, are discussed.
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6.2 Future Works

Regarding discrete-time switched affine systems, discussed in Chapter 3, open problems are the design of

switching functions under uncertainties, such as of polytopic type. Moreover, generalizing those methodologies

to stabilizing system whose subsystems present integrator dynamics could allow these approaches to be employed

in some robotics contexts, for instance controlling the linear velocity and orientation of the robot in Example

3.4, while regulating its rotational velocity to zero. Unfortunately, this cannot be done in that example using

methodologies derived from Theorem 3.1 because there is no λ ∈ Λ such that Aλ is Schur when the integrator

is included and, as discussed in Subsection 3.2.4, Theorem 3.6 might not produce results well adapted for

sampled-data control.

With respect to results in Chapter 4, lots of studies are still to be done. Indeed, a more general framework

must be developed to cope with systems presenting the exposed parameter dependency. Additionally, more

nonlinear phenomena may arise when considering induction motors instead of PMSM or more complex AC-DC

conversion typologies and active power filters. Discrete-time domain approaches should also be investigated

but no state transition matrices were found so far for these classes of systems. Other methodologies to bound

the switching frequency should also be considered, as for example, taking into account dwell-time within the

switching function design step. Finally, coping with model uncertainties is a topic of great interest in these cases

as, generally, loads might be unknown and system parameters are subject to temperature transients.
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Appendix A

Important Lemmas

Some results from the literature given in terms of lemmas are gathered together in this appendix. They were

cited in this dissertation but, for sake of organization, their presentations are done here.

A.1 Rayleigh quotient

The Rayleigh quotient is a scalar ratio defined for an arbitrary symmetric matrix Q ∈ Rnx×nx as

R(x) =
x′Qx

x′x
(A.1)

This quotient appears in several control problems and it allows determining suitable upper and lower bounds for

quadratic forms, as the next lemma presents

Lemma A.1. For any symmetric matrix Q ∈ Rnx×nx the Rayleigh quotient is bounded for all x ∈ Rnx as

min
i∈{1,··· ,nx}

γi(Q) ≤ R(x) ≤ max
i∈{1,··· ,nx}

γi(Q) (A.2)

The proof is left as an exercise and, then, omitted.

A.2 Matrix Inversion Lemma

An important result for calculating an inverse matrix follows from the Sherman-Morrison-Woodbury formula,

see Horn and Johnson (1990). Under certain conditions, this formula presents an alternative manner to evaluate

the inverse of a matrix expression, which might be useful for obtaining equivalent expressions. The next lemma

presents this result.

Lemma A.2 (Matrix Inversion Lemma). Consider a matrix written as A + XCY with C ∈ Rm×m,
X ∈ Rn×m and Y ∈ Rm×n. If A, C and C−1 + Y A−1X are regular matrices, then

(A+XCY )−1 = A−1 −A−1X(C−1 + Y A−1X)−1Y A−1 (A.3)

This proof is also omitted.

A.3 Schur Complement Lemma

The Schur Complement Lemma, widely disseminated in mathematical literature, is a powerful tool in semi-definite

programming context. This lemma is stated below as it follows in Boyd et al. (1994).



170 A.4. S-PROCEDURE

Lemma A.3 (Schur Complement Lemma). Consider an arbitrary symmetric matrix S ∈ R(nx+ny)×(nx+ny),
which can be split in blocks as

S =

[
U V

V ′ X

]
(A.4)

being U ∈ Rnx×nx , V ∈ Rnx×ny and X ∈ Rny×ny . We have that S > 0 if and only if

U > 0 and X − V ′U−1V > 0 (A.5)

or
X > 0 and U − V X−1V ′ > 0 (A.6)

Proof: Consider the regular matrix

T =

I U−1V

0 I

 (A.7)

that can be used to factorize S = T ′KT with

K =

U 0

0 X − V ′U−1V


This shows that S > 0 if and only if K > 0, which is true whenever (A.5) hold. For (A.6) the proof is done

analogously. �

Throughout this dissertation, the just presented lemma is employed extensively as it allows stating

equivalence between matrix inequalities. Whenever we want to replace (A.4) by (A.5) or vice-versa, we say that

we will apply the Schur Complement Lemma with respect to U . The same holds for (A.6), when we say that the

Schur Complement Lemma is applied with respect to X.

A.4 S-procedure

Another relevant result in our context is the S-procedure, which is also extracted from Boyd et al. (1994). In our

context, it takes into account quadratic functions on a vector variable x ∈ Rn given as F (x) = x′Qx+ 2c′x+ ρ

with a symmetric matrix Q, a vector c and a scalar ρ arbitrarily given. The S-procedure statement is presented

in the following lemma.

Lemma A.4 (S-Procedure Lemma). Consider quadratic functions Fi : Rn → R, i ∈ {0, · · · , p} with p ∈ N.
The inequality

F0(x) > 0 (A.8)

holds ∀x 6= 0: Fi(x) ≥ 0,∀i ∈ {1, · · · , p} if there exist τi ∈ R0+, i ∈ {1, · · · , p} such that for all x ∈ Rn we have
that

F0(x)−
p∑
i=1

τiFi(x) > 0 (A.9)
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Proof: Consider that (A.9) holds for given τi, i ∈ {1, · · · , p}. Hence, for all x such that Fi(x) ≥ 0, ∀i ∈ {1, · · · , p}

we have

F0(x) >

p∑
i=1

τiFi(x)

≥ 0 (A.10)

showing that F0(x) ≥ 0 holds as well. �

An interesting fact about the S-procedure is that, for the special case where p = 1, this lemma becomes lossless.

In other words, the existence of τ1 ≥ 0 such that F0(x) > τ1F1(x) is necessary and sufficient for having F0(x) > 0

for all x 6= 0 such that F1(x) ≥ 0. More discussions regarding this lemma can be found in Yakubovich (1992).

A.5 Convex maximization

Maximizing convex functions (or minimizing concave ones) is generally a non-convex optimization problem that

can have none, one or various local maxima. This fact makes these problems more intricate from a computational

viewpoint, as efficient algorithms to enumerate and compare the local maxima (if any) are still lacking in the

optimization literature. However, a clue on how to find these local maxima is that their occurrences happen at

extreme points of the feasible domain, see Rockafellar (1970); Tuy (1998) for further discussions. In this context,

the next lemma, borrowed from Deaecto and Geromel (2017), plays a key role in some developments within this

dissertation.

Lemma A.5. Consider the solution

r∗ = sup
z∈Rn

q1(z) s.t. q2(z) < 0 (A.11)

being q1(z) and q2(z) quadratic convex functions on z ∈ Rn and an α ∈ R such that

Q1 − αQ2 > 0 (A.12)

where Q1 and Q2 are Hessian matrices of q1(z) and q2(z), respectively. The global optimal solution to

r̄∗ = sup
z∈Rn

q1(z)− αq2(z) s.t. q2(z) < 0 (A.13)

is r̄∗ = r∗.

Proof: If (A.12) hold for some α ∈ R then p(z) = q1(z)− αq2(z) is a convex quadratic function. Being z∗ the

optimal solution of (A.11) and z̄∗ the one of (A.13), we can conclude that

lim
z→z∗

q2(z) = lim
z→z̄∗

q2(z) = 0 (A.14)
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since q2(z) < 0 defines a convex feasible set and will be an active constraint in both cases. From (A.11) and

(A.13), we have

r∗ = q1(z∗) ≥ q1(z̄∗) = r̄∗ + αq2(z̄∗),

r̄∗ = p(z̄∗) ≥ p(z∗) = r∗ − αq2(z∗).

Taking into account that q2(z∗) = q2(z̄∗) = 0, obtained from (A.14), we can show that r̄∗ = r∗, concluding the

demonstration. �
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Linear Matrix Inequalities

The analysis and design conditions presented in this dissertation are written in terms of matrix inequalities,

which comprises matrices whose terms are variables to be determined by an optimization procedure. The most

desired scenario is when these inequalities are given by affine functions on these decisions variables. In these

cases, we have one linear matrix inequality (LMI) or more, which define convex cones as feasible sets, called

spectrahedra. Formally, an LMI can be written in a general form as

W(x) =W0 +

n∑
i=1

xiWi > 0, (B.1)

where Wi ∈ Rm×m, i ∈ {0, · · · , n}, are symmetric matrices and x ∈ Rn is the vector of decision variables.

Deciding whether there exist x that satisfies an LMI is a tractable problem and can be efficiently done in

polynomial-time complexity, see Boyd et al. (1994) and Boyd and Vandenberghe (2004). Moreover, for a convex

function f : Rn → R, computing a feasible x for which f(x) exceeds the global minimum of

min
x∈Rn

f(x) s.t. W(x) > 0 (B.2)

by less than a given ε is still a task that can be accomplished in polynomial-time complexity. Indeed, the

interest in linear matrix inequalities has grown over the last decades as many contributions from the literature,

for instance Karmarkar (1984); Nesterov and Nemirovskii (1994); Boyd and Vandenberghe (2004), provided

interior-point and first-order methods (among others) to globally solve optimization problems subject to LMIs

with great reliability, allowing the development of semidefinite programming (SDP).

All the optimization problems in this dissertation were solved using the standard LMI framework, available

in Matlab Robust Control Toolbox between 2017 and 2019 versions. The computer used in the numerical

examples had Ubuntu as operating system between 16 and 18 versions. Many other (SDP) solvers are available

for free such as cvx and SeDuMi and may provide slightly different numerical results.

Along this dissertation the determinant minimization problem

min
R>0
− ln(det(R)) (B.3)

arises in Theorems 3.1, 3.3, 3.4 and 3.6, among others. This objective function is nonlinear but convex, as it is

demonstrated in Appendix C.1, and can be used to minimize the n-volume of ellipsoids. A specific subroutine

was implemented based on the Frank-Wolfe algorithm (see Frank and Wolfe (1956)), in a more general fashion

than it was provided in Deaecto and Geromel (2017) and Egidio et al. (2017). This algorithm is available in the

public repository

https://github.com/lucasegidio1/frankwolfe

and requires the Matlab Robust Control Toolbox.

https://github.com/lucasegidio1/frankwolfe
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B.1 BMIs

In some optimization problems in this dissertation, such as those from Theorems 3.3 and 3.6, constraints

containing scalar and matrix variables multiplying each other are present, characterizing a bilinear matrix

inequality (BMI). Luckily, fixing the scalar variables, the constraints become linear and, thus, convex. The

adopted methodology to deal with these cases in this dissertation is to search for these scalars inside a discrete

grid of values, solving a finite set of convex optimization problems. However, some strategies to locally solve

optimization problems subject to BMIs are given in Hassibi et al. (1999); Apkarian and Tuan (2000); Dinh et al.

(2011), for instance.
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Ellipsoids

A generalized n-dimensional ellipsoid E is given as a set of points x ∈ Rn defined as

E = {x ∈ Rn : x′Qx+ 2c′x+ ρ ≤ 0} (C.1)

with a symmetric positive definite Q ∈ Rn×n, a vector c ∈ Rn and a scalar ρ ∈ R satisfying ρ < c′Q−1c. An

alternative representation can be given as

E = {x ∈ Rn : (x− xc)′Q(x− xc) ≤ r} (C.2)

with r = c′Q−1c− ρ and center xc = −Q−1c. This ellipsoid has n orthogonal semi-axis whose lengths are given

as ‖si‖ = (γi(Q)/r)−1/2, i ∈ {1, · · · , n}.

Notice that, since the ellipsoid can be defined by a quadratic form (C.1), the S-procedure, introduced in

Lemma A.4 is well adapted to determine whether an ellipsoid contains unions or intersections of other ellipsoids.

Indeed, this aspect was explored by Theorem 3.6. More discussions about employing the S-procedure to this end

are available in Boyd et al. (1994).

C.1 Volume

The generalized volume of an ellipsoid E is given by

vol(E) =
π
n
2

Γ(n/2 + 1)
det

(
Q

r

)−1/2

(C.3)

where Γ(·) is the Gamma function. This equation can be obtained from the n-volume of a unit ball after applying

the endomorphism (Q/r)1/2 over its space.

Taking r = 1, without loss of generality, the volume of E is proportional to g(Q) = det(Q−1/2). This

expression is non-convex in the elements of Q, since the determinant is defined from products between them.

Nevertheless, the minimum of g(Q) coincides with the one of

f(Q) = 2 ln(g(Q)) = − ln(det(Q))

because the logarithm function is injective and increasing. Moreover, we can show that f(Q) is a convex function
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on Q, see Colaneri et al. (1997). For an arbitrary symmetric Q0 ∈ Rn×n we have

f(Q)− f(Q0) = − ln
(
det(Q−1

0 Q)
)

= −
∑
i∈Nn

ln
(
γi(Q

−1
0 Q)

)
≥ −

∑
i∈Nn

{
γi(Q

−1
0 Q)− 1

}
= −Tr(Q−1

0 Q− I) (C.4)

where the first inequality follows from the fact that ln(·) is a concave function, hence, ln(z) ≤ z − 1. Hence,

f(Q) ≥ f(Q0)− Tr(Q−1
0 Q) + Tr(Q−1

0 Q0)

= f(Q0) + Tr(−Q−1
0 (Q−Q0)) (C.5)

showing the convexity of f(Q), according to Colaneri et al. (1997). Therefore, we can conclude that minimizing

f(Q) implies in minimizing the volume of the associated ellipsoid.

Moreover, making Q arbitrarily close to Q0, we have

f(Q) ≈ f(Q0) + Tr(−Q−1
0 (Q−Q0)) (C.6)

allowing to conclude that the gradient of f(Q) is

∇Qf(Q) = −Q−1 (C.7)

This expression is the key for implementing the Frank-Wolfe algorithm employed to minimize f(Q) along this

dissertation, as discussed in Appendix B. Information about the gradient ∇Qf(Q) is used by this algorithm at

each iteration to minimize the linear approximation given in (C.6).

C.2 Projection

The next lemma provides an instrumental result about the projection of an ellipsoid onto a lower-dimensional

space.

Lemma C.1. Consider a generic ellipsoid

Ẽ = {x̃ ∈ R2n : p(x̃) ≤ 0} (C.8)

with x̃ = [x′ x̂′]′ and

p(x̃) =

xx̂
1


′ Σ Ξ ′ 0

Ξ Υ 0

0 0 −1


xx̂

1

 (C.9)
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where Υ > 0 and Σ−Ξ ′Υ−1Ξ > 0. The projection of Ẽ onto the subspace generated by x ∈ Rn is the ellipsoid

E = {x ∈ Rn : x′(Σ−Ξ ′Υ−1Ξ)x ≤ 1} (C.10)

Proof: The projection of Ẽ onto the subspace generated by x is also an ellipsoid (see Blanchini and Miani (2008))

defined in a general form E = {x ∈ Rn : x′Ωx ≤ 1} such that x ∈ E ∀x̃ : x̃ ∈ Ẽ . From the S-procedure (see

Appendix A.4), a necessary and sufficient condition for that is the existence of a scalar τ ∈ R0+ such that

x′Ωx− 1 < τp(x̃) (C.11)

As p(x̃) is a convex function in x̂, this last inequality holds for every x̂ if and only if

x′Ωx− 1 ≤ inf
x̂∈Rn

τp(x̃) (C.12)

Evaluating the minimum of p(x̃) with respect to x̂ by making ∂p(x̃)/∂x̂ = 0 we have that it occurs for

x̂∗ = −Υ−1Ξx. Replacing x̂∗ into (C.12), we obtain

x
1

Ω 0

0 −1

x
1

 ≤ τ
x

1

′ Σ−Ξ ′Υ−1Ξ 0

0 −1

x
1

 (C.13)

The minimum ellipsoid Ẽ must satisfies this constraint at the equality, which is evident to occur for τ = 1 and

Ω = Σ−Ξ ′Υ−1Ξ > 0, providing the ellipsoid (C.10). �

A useful remark is that although the generic ellipsoid defined in this lemma presents its center at the origin it is

still general since x can define any translated vector.
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discrete-time, 31
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Lyapunov Stability Theorem, 26
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discrete-time, 27

Lyapunov-Metzler inequalities
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discrete-time, 49

Matrix Inversion Lemma, 169

nonlinear system, 23

norm-equivalent discretization, 40
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continuous-time, 34

discrete-time, 37

operating region, 41

permanent magnet synchronous machine, 114

poles, 29

pulse-width modulated (PWM), 44
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Rayleigh quotient, 169
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S-Procedure Lemma, 170

sampled-data LTI systems, 39

Schur Complement Lemma, 170

Schur stable matrix, 31
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sliding surface, 43
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stable LTI system, 29

state vector, 23

state-dependent switching law, 41
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switched system, 40
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